Quantum Speed-ups for Semidefinite Programming

Fernando G.S.L. Brandão
Caltech

Krysta Svore
Microsoft Research

QIP 2017
Quantum Algorithms

Exponential speed-ups:
Simulate quantum physics, factor big numbers (Shor’s algorithm), ...

Polynomial Speed-ups:
Searching (Grover’s algorithm), ...

Heuristics:
Quantum annealing, adiabatic optimization, ...
Quantum Algorithms

Exponential speed-ups:
Simulate quantum physics, factor big numbers (Shor’s algorithm), ...,

Polynomial Speed-ups:
Searching (Grover’s algorithm), ...

Heuristics:
Quantum annealing, adiabatic optimization, ...

This Talk:
Solving Semidefinite Programming belongs here
Semidefinite Programming

... is an important class of convex optimization problems

\[
\begin{align*}
\max & \quad \text{tr}(CX) \\
\forall j \in [m], \quad & \text{tr}(A_j X) \leq b_j \\
X & \geq 0.
\end{align*}
\]

Input: \(n \times n \), \(s \)-sparse matrices \(C, A_1, \ldots, A_m \) and numbers \(b_1, \ldots, b_m \)

Output: \(X \)
Semidefinite Programming

... is an important class of convex optimization problems

\[
\begin{align*}
\text{max } \text{tr}(CX) \\
\forall j \in [m], \quad \text{tr}(A_j X) & \leq b_j \\
X & \geq 0.
\end{align*}
\]

Input: \(n \times n\), \(s\)-sparse matrices \(C, A_1, ..., A_m\) and numbers \(b_1, ..., b_m\)

Output: \(X\)

Linear Programming: special case

Many applications (combinatorial optimization, operational research,)

Natural in quantum (density matrices, ...)
Semidefinite Programming

... is an important class of convex optimization problems

$$\begin{align*}
\max & \quad \text{tr}(CX) \\
\text{subject to} & \quad \forall j \in [m], \quad \text{tr}(A_j X) \leq b_j \\
& \quad X \geq 0.
\end{align*}$$

Input: \(n \times n\), \(s\)-sparse matrices \(C, A_1, \ldots, A_m\) and numbers \(b_1, \ldots, b_m\)

Output: \(X\)

Linear Programming: special case

Many applications (combinatorial optimization, operational research,)

Natural in quantum (density matrices, ...)

Algorithms

Interior points: \(O((m^2ns + mn^2) \log(1/\delta))\)

Multiplicativc Weights: \(O((mns (\omega R)/\delta^2))\)
Semidefinite Programming

... is an important class of convex optimization problems

\[
\begin{align*}
\max & \quad \text{tr}(CX) \\
\forall j \in [m], & \quad \text{tr}(A_j X) \leq b_j
\end{align*}
\]

Input: \(n\times n\) matrices \(C, A_1, \ldots, A_m\) and numbers \(b_1, \ldots, b_m\)

Output: \(X\)

Linear Programming: special case

Many applications (combinatorial optimization, operational research,)

Natural in quantum \((\text{density matrices})\)

Algorithms

- Interior points: \(O((m^2ns + mn^2)\log(1/\delta))\)
- Multiplicative Weights: \(O((mns (\omega R)/\delta^2))\)

Are there quantum speed-ups for SDPs/LPs?

Natural question. But unexplored so far
SDP Duality

Primal:
\[
\forall j \in [m], \quad \operatorname{tr}(A_j X) \leq b_j \quad \text{Opt}_{\text{primal}} = \text{Opt}_{\text{dual}}
\]

Dual:
\[
\min b.y \\
\sum_{j=1}^{m} y_j A_j \geq C \\
y \geq 0.
\]

\[y: m\text{-dimensional vector}\]

Under mild conditions: \(\text{Opt}_{\text{primal}} = \text{Opt}_{\text{dual}}\)
Size of Solutions

Primal: \[\forall j \in [m], \quad \operatorname{tr}(A_j X) \leq b_j \]
\[X \geq 0. \]

R parameter: \[\operatorname{Tr}(X_{\text{opt}}) \leq R \]

Dual: \[\min b.y \]
\[\sum_{j=1}^{m} y_j A_j \geq C \]
\[y \geq 0. \]

r parameter: \[\sum_i (y_{\text{opt}})_i \leq r \]
SDP Lower Bounds

Even to write down optimal solutions take time:

Primal \((n \times n) \text{ PSD matrix } X\): \(\Omega(n^2)\)

Dual \((m \text{ dim vector } y)\): \(\Omega(m)\)
SDP Lower Bounds

Even to write down optimal solutions take time:

Primal \((n \times n\) PSD matrix \(X\)): \(\Omega(n^2)\)
Dual \((m\) dim vector \(y\)): \(\Omega(m)\)

Even just to compute optimal value requires:

Classical: \(\Omega(n+m)\) (for constant \(r, R, s, \delta\))
Quantum: \(\Omega(n^{1/2} + m^{1/2})\) (for constant \(r, R, s, \delta\))

Easy reduction to search problem

(Appeldoorn, Gilyen, Gribling, de Wolf)

Quantum: \(\Omega(nm)\) if \(n \cong m\)
\(\min(m, n) (\max(m, n))^{1/2}\)

See poster this afternoon

(R, s, \(\delta = O(1)\) but not \(r\))
(R, s, \(\delta = O(1)\) but not \(r\))
Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 \text{poly}(\log(n, m), R, r, \delta)$

Input: $n \times n$, s-sparse matrices $C, A_1, ..., A_m$ and numbers $b_1, ..., b_m$
Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 \text{poly}(\log(n, m), R, r, \delta)$

Input: $n \times n$, s-sparse matrices C, A_1, \ldots, A_m and numbers b_1, \ldots, b_m

Normalization: $||A_i||, ||C|| \leq 1$

Output: Samples from $y/||y||_1$ and value $||y||_1$ and/or Quantum Samples from $X/\text{tr}(X)$ and value $\text{tr}(X)$

Value $\text{opt} \pm \delta$

(output form similar to HHL Q. Algorithm for linear equations)
Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 \text{poly}(\log(n, m), R, r, \delta)$

Oracle Model: We assume there’s an oracle that outputs a chosen non-zero entry of C, A_1, \ldots, A_m at unit cost:

$$|j, k, l, z\rangle \rightarrow |j, k, l, z \oplus (A_j)_{k,f_{j,k}(l)}\rangle$$

$$f_{j,k} : [r] \rightarrow [n]$$

- choice of A_j
- row k
- l non-zero element
Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 \text{poly}(\log(n, m), R, r, \delta)$

The good:
Unconditional Quadratic speed-ups in terms of n and m

Close to optimal: $\Omega(n^{1/2} + m^{1/2})$ lower bound
Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 \text{poly}(\log(n, m), R, r, \delta)$

The good:
Unconditional Quadratic speed-ups in terms of n and m

Close to optimal: $\Omega(n^{1/2} + m^{1/2})$ q. lower bound

The bad:
Terrible dependence on other parameters: $\text{poly}(\log(n, m), R, r, \delta) \leq (Rr)^{32} \delta^{-18}$

Close to optimal: no general super-polynomial speed-ups
Quantum Algorithm for SDP

Result 1: There is a quantum algorithm for solving SDPs running in time $n^{1/2} m^{1/2} s^2 \text{poly}(\log(n, m), R, r, \delta)$

Special case:
If the SDP is s.t. $b_i \geq 1$ for all i, there is no dependence on r (size of dual solution)
Result 2: There is a quantum algorithm for solving SDPs running in time $T_{\text{Gibbs}} m^{1/2} \text{poly}(\log(n, m), s, R, r, \delta)$.
Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{\text{Gibbs}} m^{1/2} \text{poly}(\log(n, m), s, R, r, \delta)$

$T_{\text{Gibbs}} :=$ Time to prepare on quantum computer Gibbs states of the form

$$\exp \left(\sum_{i=1}^{m} \nu_i A_i + \nu_0 C \right) / \text{tr}(\ldots)$$

for real numbers $|\nu_i| \leq O(\log(n), \text{poly}(1/\delta))$
Larger Speed-ups?

Result 2: There is a quantum algorithm for solving SDPs running in time $T_{\text{Gibbs}} m^{1/2}\text{poly}(\log(n, m), s, R, r, \delta)$

$T_{\text{Gibbs}} :=$ Time to prepare on quantum computer Gibbs states of the form

$$\exp \left(\sum_{i=1}^{m} \nu_i A_i + \nu_0 C \right) / \text{tr}(\ldots)$$

for real numbers $|\nu_i| \leq O(\log(n), \text{poly}(1/\delta))$

Can use **Quantum Gibbs Sampling** (e.g. Quantum Metropolis) as heuristic. Exponential Speed-up if thermalization is quick (poly #qubits = polylog(n))

Gives application of quantum Gibbs sampling outside simulating physical systems
Result 3: There is a quantum algorithm for solving SDPs running in time $m^{1/2}\text{poly}(\log(n, m), s, R, r, \delta, \text{rank})$ with data in quantum form.

Quantum Oracle Model: There is an oracle that given i, outputs the eigenvalues of A_i and its eigenvectors as quantum states

$$\text{rank} := \max (\max_i \text{rank}(A_i), \text{rank}(C))$$
Larger Speed-ups with “quantum data”

Result 3: There is a quantum algorithm for solving SDPs running in time $m^{1/2}\text{poly}(\log(n, m), s, R, r, \delta, \text{rank})$ with data in quantum form.

Quantum Oracle Model: There is an oracle that given i, outputs the eigenvalues of A_i and its eigenvectors as quantum states.

rank := $\max (\max_i \text{rank}(A_i), \text{rank}(C))$

Idea: in this case one can easily perform the Gibbs sampling in $\text{poly}(\log(n), \text{rank})$ time.

Limitation: Not clear the relevance of the model. How to compare with classical methods in a meaningful way?
Special Case: Max Eigenvalue

Computing the max eigenvalue of C is a SDP

$$\max \operatorname{tr}(CX): \quad \operatorname{tr}(X) = 1, \quad X \succeq 0$$
Computing the max eigenvalue of C is a SDP

$$\text{max } \text{tr}(C X) : \quad \text{tr}(X) = 1, \quad X \geq 0$$

This is a well studied problem:

Quantum Annealing (cool down $-C$):

If we can prepare $e^{\beta C} / \text{tr}(e^{\beta C})$ for $\beta = O(\log(n)/\delta)$ can compute max eigenvalue to error δ
Special Case: Max Eigenvalue

(Poulin, Wocjan ‘09) Can prepare $e^{\beta C}/\text{tr}(e^{\beta C})$ for s-sparse C in time $\tilde{O}(s \sqrt{n})$ on quantum computer

Idea: Phase estimation + Amplitude amplification

$$C|\psi_i\rangle = E_i|\psi_i\rangle$$

$$\sum_i |\psi_i\rangle|\psi_i^*\rangle \rightarrow \sum_i |\psi_i\rangle|\psi_i^*\rangle|E_i\rangle \rightarrow \sum_i e^{-E_i/2}|\psi_i\rangle|\psi_i^*\rangle|E_i\rangle|0\rangle + \ldots$$

phase estimation

Post-selecting on “0” gives a purification of Gibbs state with $\text{Pr} > O(1/n)$

Using amplitude amplification can boost $\text{Pr} > 1-o(1)$ with $O(n^{1/2})$ iterations
General Case: Quantizing Arora-Kale Algorithm

The quantum algorithm is based on a classical algorithm for SDP due to Arora and Kale (2007) based on the multiplicative weight method. Let’s review their method

Assumptions:

We assume $b_i \geq 1$.
Can reduce general case to this with blow up of poly(r) in complexity

We also assume w.l.o.g. $A_1 = I, b_1 = R$
The Oracle

The Arora-Kale algorithm has an auxiliary algorithm (the ORACLE) which solves a simple linear programming:

\[
\text{ORACLE}(\rho)
\]

Searches for a vector \(y \) s.t.

i) \(y \in D_\alpha := \{ y : y \geq 0, \ b.y \leq \alpha \} \)

ii) \(\sum_{j=1}^{m} \text{tr}(A_j \rho) y_j - \text{tr}(C \rho) \geq 0 \)
Arora-Kale Algorithm

\[
\rho^1 = I/n, \quad \varepsilon = \frac{\delta}{2R}, \quad \varepsilon' = -\ln(1 - \varepsilon), \quad T = \frac{8R^2 \ln(n)}{\delta^2}
\]

For \(t = 1, \ldots, T \)

1. \(y^t \leftarrow \text{ORACLE}(\rho^t) \)

2. \(M^t = \left(\sum_{j=1}^{m} y_j^t A_j - C + RI \right) / 2R \)

3. \(W^{t+1} = \exp \left(-\varepsilon' \left(\sum_{\tau=1}^{t} M^\tau \right) \right) \)

4. \(\rho^{t+1} = W^{t+1} / \text{tr}(W^{t+1}) \)

Output: \(\bar{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t \) \quad \quad e_1 = (1, 0, \ldots, 0)
\[
\rho^1 = I/n, \quad \varepsilon = \frac{\delta}{2R}, \quad \varepsilon' = -\ln(1 - \varepsilon), \quad \gamma = \frac{8R^2 \ln(n)}{\delta^2}
\]

For \(t = 1, \ldots, T \)

1. \(y_t^* = \text{Oracle}(\rho_t) \)

2. \(W_t = \frac{1}{\gamma} \sum_{\tau=1}^{T} \left(\frac{2}{\gamma} \right)^{\tau-1} y_{\tau}^* \)

3. \(W_{t+1} = W_t + \rho_t \sum_{\tau=1}^{T} (2(2\tau) - T - 1) y_{\tau}^* \) (Note: The sum notation should be clear for the correct expression)

4. \(\rho_{t+1} = W_{t+1} / \text{tr}(W_{t+1}) \)

Output: \(\bar{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y_t^* \) \quad e_1 = (1, 0, \ldots, 0)

\textbf{Thm (Arora-Kale '07)} \quad \bar{y}.b \leq (1+\delta) \alpha

Can find optimal value by binary search
Why Arora-Kale works?

Since \(y_t \in D_\alpha := \{y : y \geq 0, b.y \leq \alpha\} \)

\[
\overline{y}.b \leq \frac{\delta \alpha}{R} b_1 + \frac{1}{T} \sum_{t=1}^{T} y^t.b \leq (1 + \delta)\alpha
\]

Must check \(\overline{y} \) is feasible

From Oracle, for all \(t \):

\[
\text{tr} \left(\left(\sum_{j=1}^{m} y_{j}^t A_j - C \right) \rho^t \right) \geq 0
\]

We need:

\[
\lambda_{\min} \left(\left(\sum_{j=1}^{m} \left(\frac{1}{T} \sum_{t=1}^{T} y_{j}^t \right) A_j - C \right) \right) \geq 0
\]
Matrix Multiplicative Weight

MMW (Arora, Kale ‘07) Given $n \times n$ matrices $0 < M^t < I$ and $\varepsilon < \frac{1}{2}$,

$$\frac{1}{T} \sum_{t=1}^{T} \text{tr}(M^t \rho^t) \leq \left(\frac{1 + \varepsilon}{T} \right) \lambda_n \left(\sum_{t=1}^{T} M^t \right) + \frac{\ln(n)}{T\varepsilon}$$

with $\rho^t = \frac{\exp(-\varepsilon' \left(\sum_{\tau=1}^{t-1} M^\tau \right))}{\text{tr}(\ldots)}$ and $\varepsilon' = -\ln(1 - \varepsilon)$

$\lambda_n : \text{min eigenvalue}$

2-player zero-sum game interpretation:

- Player A chooses density matrix X^t
- Player B chooses matrix $0 < M^t < I$

Pay-off: $\text{tr}(X^t M^t)$

"$X^t = \rho^t$ strategy almost as good as global strategy"
Matrix Multiplicative Weight

MMW (Arora, Kale ‘07) Given $n \times n$ matrices M^t and $\varepsilon < \frac{1}{2}$,

$$
\frac{1}{T} \sum_{t=1}^{T} \text{tr}(M^t \rho^t) \leq \left(\frac{1 + \varepsilon}{T} \right) \lambda_n \left(\sum_{t=1}^{T} M^t \right) + \frac{\ln(n)}{T \varepsilon}
$$

with

$$
\rho^t = \frac{\exp(-\varepsilon' \left(\sum_{\tau=1}^{t-1} M^\tau \right))}{\text{tr}(\ldots)}
$$

and

$$
\varepsilon' = - \ln(1 - \varepsilon)
$$

λ_n : min eigenvalue

From Oracle:

$$
\text{tr} \left(\left(\sum_{j=1}^{m} y_j^t A_j - C \right) \rho^t \right) \geq 0
$$

By MMW:

$$
\lambda_{\min} \left(\left(\sum_{j=1}^{m} \left(\frac{1}{T} \sum_{t=1}^{T} y_j^t \right) A_j - C \right) \right) \geq 0
$$
Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce y^t and apply amplitude amplification to solve it in time $\tilde{O}(s^2 n^{1/2} m^{1/2})$

2. Sparsify M^t to be a sum of $O(\log(m))$ terms:

 $$\overline{M}^t = \left(\|y^t\|_1 Q^{-1} \sum_{j=1}^{Q} A_{ij} - C + RI \right) / 2R$$

 $$(i_1, \ldots, i_Q) \sim y^t / \|y^t\|_1, \quad Q = O(\log(m))$$

3. Quantum Gibbs Sampling + amplitude amplification to prepare

 $$\overline{\rho}^t = \exp \left(-\varepsilon' \sum_{\tau=1}^{t} \overline{M}^T \right) / \text{tr}(\ldots)$$

 in time $\tilde{O}(s^2 n^{1/2})$.
Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce y^t and apply amplitude amplification to solve it in time $\tilde{O}(s^2 n^{1/2} m^{1/2})$

We’ll show there is a feasible y^t of the form $y^t = Nq^t$ with

$q^t := \exp(h)/\text{tr}(\exp(h))$ and

$$h = \sum_{i=1}^{m} \left(\lambda \text{tr}(A_i \rho^t) + \mu b_i \right) |i\rangle \langle i|$$

We need to simulate an oracle to the entries of h. We do it by measuring ρ^t with A_i.

To prepare each ρ^t takes time $\tilde{O}(s^2 n^{1/2})$. To sample from q^t requires $\tilde{O}(m^{1/2})$ calls to oracle for h. So total time is $\tilde{O}(s^2 n^{1/2} m^{1/2})$
Quantizing Arora-Kale Algorithm

We make it quantum as follows:

1. Implement ORACLE by Gibbs Sampling to produce y^t and apply amplitude amplification to solve it in time $\tilde{O}(s^2 n^{1/2} m^{1/2})$

2. Sparsify M^t to be a sum of $O(\log(m))$ terms:

$$M^t = \left(\|y^t\|_1 Q^{-1} \sum_{j=1}^Q A_{i_j} - C + RI \right) / 2R \quad \overline{M^t} \approx M^t$$

$$(i_1, \ldots, i_Q) \sim y^t / \|y^t\|_1, \quad Q = O(\log(m))$$

Can show it works by Matrix Hoeffding bound: Z_1, \ldots, Z_k independent $n \times n$ Hermitian matrices s.t. $E(Z_i) = 0, \|Z_i\| < \lambda$. Then

$$\Pr \left(\left\| \frac{1}{k} \sum_{i=1}^k Z_i \right\| \geq \varepsilon \right) \leq n \cdot \exp \left(-\frac{k\varepsilon^2}{8\lambda^2} \right)$$
Quantum Arora-Kale, Roughly

Let $\rho^1 = I/n$, $\varepsilon = \frac{\delta \alpha}{2\omega R}$, $\varepsilon' = -\ln(1 - \varepsilon)$, $T = \frac{8\omega^2 R^2 \ln(n)}{\delta^2 \alpha^2}$.

For $t = 1, \ldots, T$

1. $y^t \leftarrow \text{ORACLE}(\rho^t)$

2. $M^t = \sum_{j=1}^{m} \left(y^t_j A_j - C + \omega I \right) / 2\omega$

3. Sparsify M^t to $(M')^t$

4. $\rho^{t+1} = \exp \left(-\varepsilon' \left(\sum_{\tau=1}^{t} \left((M')^\tau \right) \right) \right) / \text{tr}(\ldots)$

Gibbs Sampling

Output: $\overline{y} = \frac{\delta \alpha}{R} e_1 + \frac{1}{T} \sum_{t=1}^{T} y^t$
Implementing Oracle by Gibbs Sampling

\textbf{ORACLE}(\rho)

Searches for a vector \(y \) s.t.

i) \(y \in D_\alpha := \{y : y \geq 0, \ b.y \leq \alpha\} \)

\[\sum_{j=1}^{m} \text{tr}(A_j \rho) y_j - \text{tr}(C \rho) \geq 0 \]
Implementing Oracle by Gibbs Sampling

Searches for (non-normalized) probability distribution y satisfying two linear constraints:

$$\text{tr}(BY) \leq \alpha, \quad \text{tr}(AY) \geq \text{tr}(C\rho)$$

$$Y = \sum_i y_i |i\rangle\langle i|, \quad B = \sum_i b_i |i\rangle\langle i|, \quad A = \sum_i \text{tr}(A_i \rho) |i\rangle\langle i|$$

Claim: We can take Y to be Gibbs: There are constants N, λ, μ s.t.

$$Y = N \frac{\exp(\lambda A + \mu B)}{\text{tr}(\ldots)}$$
Jaynes’ Principle

(Jaynes 57) Let ρ be a quantum state s.t. $\text{tr}(\rho M_i) = c_i$

Then there is a Gibbs state of the form $\exp \left(\sum_i \lambda_i M_i \right) / \text{tr}(\ldots)$

with same expectation values.

Drawback: no control over size of the λ_i’s.
Finitary Jaynes’ Principle

(Lee, Raghavendra, Steurer ‘15) Let \(\rho \) s.t.

\[
\text{tr}(\rho M_i) = c_i
\]

Then there is a

\[
\sigma := \frac{\exp \left(\sum_i \lambda_i M_i \right)}{\text{tr}(\ldots)}
\]

with

\[
|\lambda_i| \leq 2 \ln(\text{dim}(\rho))/\varepsilon
\]

s.t.

\[
|\text{tr}(M_i \sigma) - c_i| \leq \varepsilon
\]

(Note: Used to prove limitations of SDPs for approximating constraints satisfaction problems; see James Lee’s talk)
Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form

$$Y = N \frac{\exp(\lambda A + \mu B)}{\text{tr}(\ldots)}$$

with $\lambda, \mu < \log(n)/\varepsilon$ and $N < \alpha$ s.t.

$$\text{tr}(BY) \leq \alpha + N\varepsilon, \quad \text{tr}(AY) \geq \text{tr}(C\rho) - N\varepsilon$$

$$Y = \sum_i y_i |i\rangle\langle i|, \quad B = \sum_i b_i |i\rangle\langle i|, \quad A = \sum_i \text{tr}(A_i \rho) |i\rangle\langle i|$$
Implementing Oracle by Gibbs Sampling

Claim There is a Y of the form

$$ Y = N \frac{\exp(\lambda A + \mu B)}{\text{tr}(\ldots)} $$

with $\lambda, \mu < \log(n)/\varepsilon$ and $N < \alpha$ s.t.

$$ \text{tr}(BY) \leq \alpha + N\varepsilon, \quad \text{tr}(AY) \geq \text{tr}(C\rho) - N\varepsilon $$

Can implement oracle by exhaustive searching over x, y, N for a Gibbs distribution satisfying constraints above

(only $\alpha \log^2(n)/\varepsilon^3$ different triples needed to be checked)
Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:
- Can we improve the parameters (in terms of R, r, δ)?
- Can we find optimal algorithm in terms of n, m and s?
- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?
- Q. computer only used for Gibbs Sampling. Application of small-sized q. computer?
Conclusion and Open Problems

Quantum computers provide speed-up for SDPs

Many open questions:
- Can we improve the parameters (in terms of R, r, δ)?
- Can we find optimal algorithm in terms of n, m and s?
- Can we find relevant settings with superpoly speed-ups?
- Robustness to error?
- Q. computer only used for Gibbs Sampling. Application of small-sized q. computer?

Thanks!