Catalytic Decoupling
Joint work with Mario Berta, Frédéric Dupuis, Renato Renner and Matthias Christandl
(arXiv:1605.00514, accepted for publication in PRL)

Deconstruction and Conditional Erasure of Correlations
Joint work with Mario Berta, Fernando Brandao, and Mark Wilde
(arXiv:1609.06994)

Christian Majenz
QMATH, University of Copenhagen
QIP, Microsoft Research, Seattle
Introduction:
Decoupling and Erasure
Decoupling

- Idea: destroy correlations by local noisy quantum channels
Decoupling

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...
Decoupling

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
Decoupling

▶ Idea: destroy correlations by local noisy quantum channels
▶ Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
Decoupling

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A

$U_A(\cdot)U_A^\dagger$
Decoupling

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state
Decoupling

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state
- how big do we have to choose A_2?
Decoupling

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state
- how big do we have to choose A_2?
- $\log |A_2| \approx \frac{n}{2} I(A : E)_\sigma$ for $\rho = \sigma \otimes^n$ (Horodecki, Oppenheim, Winter ’05)
Decoupling

- Idea: destroy correlations by local noisy quantum channels
- Proof tool in quantum Shannon theory, thermodynamics, solid state physics, black hole radiation...

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- divide $A \cong A_1 \otimes A_2$
- apply a unitary to A
- trace out $A_2 \Rightarrow$ approximate product state
- how big do we have to choose A_2?
- $\log |A_2| \approx \frac{n}{2} I(A : E)_{\sigma}$ for $\rho = \sigma \otimes n$ (Horodecki, Oppenheim, Winter ’05)

⇒ Operational interpretation of the quantum mutual information!
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?
- optimal: $k \approx nI(A) \sigma$ for $\rho = \sigma \otimes n$
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in ’04
- Destruction of correlations is goal (not proof technique)
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in ’04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel

$$2^{-k} \sum_{i=1}^{2^k} U_i(\cdot)U_i^\dagger$$
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?

$$2^{-k} \sum_{i=1}^{2^k} U_i(\cdot)U_i^\dagger$$
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?
- optimal: $k \approx nl(A : E)_\sigma$ for $\rho = \sigma^\otimes n$

$$2^{-k} \sum_{i=1}^{2^k} U_i(\cdot) U_i^\dagger$$
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in '04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:

- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?
- optimal: $k \approx n I(A : E)_\sigma$ for $\rho = \sigma \otimes^n$

⇒ Operational interpretation of the quantum mutual information!
Erasure of correlations

- Task introduced by Groisman, Popescu and Winter in ’04
- Destruction of correlations is goal (not proof technique)

Step-by-step definition:
- bipartite quantum system $A \otimes E$ in mixed state ρ_{AE}
- Apply random unitary channel
- Correlations erased if approximately product
- How big do we have to choose k?
- optimal: $k \approx n I(A : E)_\sigma$ for $\rho = \sigma \otimes^n$

⇒ Operational interpretation of the quantum mutual information!

⇒ decoupling, erasure of correlations: two sides of same coin
Decoupling

\[I(A : E)_\rho \]
Decoupling

\[I(A : E)_\rho \]

Catalytic Decoupling

\[I^\varepsilon_{\text{max}}(A : E)_\rho \]
This talk

Decoupling

$$I(A : E)_\rho$$

Catalytic Decoupling

$$I^\varepsilon_{\text{max}}(A : E)_\rho$$

Conditional Erasure

$$I(A : E|R)_\rho$$

one-shot

side information

\(E\) \(\otimes\) \(A_1\)

\(\otimes\)

\(\otimes\)

\(\otimes\)

\(\otimes\)
Catalytic decoupling
Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} (H^\varepsilon_{\text{max}}(A)_\rho - H^\varepsilon_{\text{min}}(A|E)_\rho) - O \left(\log \frac{1}{\varepsilon}\right).$$

Then $\exists U_A$ such that

$$\left\| \text{tr}_{A_2} \left(U_A \rho_{AE} U_A^\dagger \right) - \frac{1}{|A_1|} \otimes \rho_E \right\|_1 \leq O(\varepsilon).$$
Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} (H_{\max}^\varepsilon(A)_{\rho} - H_{\min}^\varepsilon(A|E)_{\rho}) - \mathcal{O}\left(\log \frac{1}{\varepsilon}\right).$$

Then $\exists U_A$ such that

$$\left\| \text{tr}_{A_2}\left(U_A\rho_{AE}U_A^\dagger\right) - \frac{1_{A_1}}{|A_1|} \otimes \rho_{E}\right\|_1 \leq \mathcal{O}(\varepsilon).$$
Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} (H^\epsilon_{\text{max}}(A)_{\rho} - H^\epsilon_{\text{min}}(A|E)_\rho) - \mathcal{O} \left(\log \frac{1}{\epsilon} \right).$$

Then $\exists U_A$ such that

$$\left\| \text{tr}_{A_2} \left(U_A \rho_{AE} U_A^\dagger \right) - \frac{1_{A_1}}{|A_1|} \otimes \rho_E \right\|_1 \leq \mathcal{O}(\epsilon).$$
Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H^\varepsilon_{\text{max}}(A)_\rho - H^\varepsilon_{\text{min}}(A|E)_\rho \right) - O \left(\log \frac{1}{\varepsilon} \right).$$
Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H^\varepsilon_{\text{max}}(A)_{\rho} - H^\varepsilon_{\text{min}}(A|E)_{\rho} \right) - \mathcal{O} \left(\log \frac{1}{\varepsilon} \right).$$

Then $\exists U_A$ such that

$$\left\| \text{tr}_{A_2} \left(U_A \rho_{AE} U_A^\dagger \right) - \frac{1}{|A_1|} A_1 \otimes \rho_E \right\|_1 \leq \mathcal{O} (\varepsilon).$$
Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let ρ_{AE} be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} \left(H^{\epsilon}_{\text{max}}(A)_{\rho} - H^{\epsilon}_{\text{min}}(A|E)_{\rho} \right) - O \left(\log \frac{1}{\epsilon} \right).$$

Then $\exists U_A$ such that

$$\left\| \text{tr}_{A_2} \left(U_A \rho_{AE} U_A^\dagger \right) - \frac{1_{A_1}}{|A_1|} \otimes \rho_E \right\|_1 \leq O(\epsilon).$$

but there are product states with

$H^{\epsilon}_{\text{max}}(A)_{\rho} - H^{\epsilon}_{\text{min}}(A|E)_{\rho} = O(\log |A|)$ \Rightarrow suboptimal for applications like state merging
One-shot decoupling

Theorem (Dupuis, Berta, Wullschleger, Renner ’10)

Let $\rho_{AE} = \sigma_{A'E'}^\otimes n$ be a bipartite quantum state, and let $\mathcal{H}_A \cong \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$ such that

$$\log |A_2| \geq \frac{1}{2} I(E : A)\rho - O \left(\log \frac{1}{\varepsilon} \right).$$

Then $\exists U_A$ such that

$$\left\| \text{tr}_{A_2} \left(U_A \rho_{AE} U_A^\dagger \right) - \frac{1_{A_1}}{|A_1|} \otimes \rho_E \right\|_1 \leq O(\varepsilon).$$
One-shot state merging

- previous work on one-shot state merging:
One-shot state merging

- previous work on one-shot state merging:

- One-shot coherent state merging possible with

\[q(A : R)_\psi = \frac{1}{2} I_{\max}^\varepsilon (A : R) + \log \log |A| + O \left(\log \frac{1}{\varepsilon} \right) \] (Berta, Christandl, Renner '09)
One-shot state merging

- previous work on one-shot state merging:

- One-shot coherent state merging possible with
 \[q(A : R)_\psi = \frac{1}{2} I_{\max}^\varepsilon (A : R) + \log \log |A| + O \left(\log \frac{1}{\varepsilon} \right) \] (Berta, Christandl, Renner '09)

 ... uses standard decoupling and embezzling states (van Dam and Hayden '02)
One-shot state merging

- previous work on one-shot state merging:

 - One-shot coherent state merging possible with

 \[\psi = \frac{1}{2} I_{\text{max}}(A : R) + \log \log |A| + O(\log \frac{1}{\epsilon}) \]
 (Berta, Christandl, Renner '09)

 - uses standard decoupling and embezzling states (van Dam and Hayden '02)

- One-shot state merging possible with

 \[\psi = \frac{1}{2} (I_{\text{max}}(A : R) + \log \log I_{\text{max}}(A : R)) + O(\log \frac{1}{\epsilon}) \]
 (Anshu, Devabathini, Jain '15)
One-shot state merging

- previous work on one-shot state merging:

- One-shot coherent state merging possible with
 \[q(A : R)_{\psi} = \frac{1}{2} I_{\max}^\varepsilon (A : R) + \log \log |A| + O \left(\log \frac{1}{\varepsilon} \right) \]
 (Berta, Christandl, Renner '09)

 ... uses standard decoupling and embezzling states (van Dam and Hayden '02)

- One-shot state merging possible with
 \[q(A : R)_{\psi} = \frac{1}{2} (I_{\max}^\varepsilon (A : R) + \log \log I_{\max}^\varepsilon (A : R)) + O \left(\log \frac{1}{\varepsilon} \right) \]
 (Anshu, Devabathini, Jain '15)

 ... uses different technique called convex split lemma.
One-shot state merging

- previous work on one-shot state merging:
- One-shot coherent state merging possible with:
 \[q(A : R)_\psi = \frac{1}{2} I_{\max}(A : R) + \log \log |A| + O(\log \frac{1}{\varepsilon}) \] (Berta, Christandl, Renner '09)

\[... \] uses standard decoupling and embezzling states (van Dam and Hayden '02)

- One-shot state merging possible with:
 \[q(A : R)_\psi = \frac{1}{2} (I_{\max}^{\varepsilon}(A : R) + \log \log I_{\max}^{\varepsilon}(A : R)) + O(\log \frac{1}{\varepsilon}) \] (Anshu, Devabathini, Jain '15)

\[... \] uses different technique called convex split lemma.

- tailored techniques
Generalize decoupling twofold:

- drop randomization condition
- allow free mixed ancillary states

\(A \otimes E \) in a mixed state \(\rho \)

- add ancillary system \(A' \) in a fixed state
- divide system \(A \otimes A' \) into two parts, \(\sim A_1 \otimes A_2 \)
- apply a unitary to \(AA' \)
- trace out \(A_2 \)

How big do we have to choose \(A_2 \) here?
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states

Step-by-step definition:
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states

Step-by-step definition:
- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states

Step-by-step definition:
- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states

Step-by-step definition:
- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A \otimes A'$ into two parts, $A \otimes A' \cong A_1 \otimes A_2$
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states

Step-by-step definition:
- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A \otimes A'$ into two parts, $A \otimes A' \cong A_1 \otimes A_2$
- apply a unitary to AA'

\[U_{AA'}(\cdot)U_{AA'}^\dagger \]
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states

Step-by-step definition:
- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A \otimes A'$ into two parts, $A \otimes A' \cong A_1 \otimes A_2$
- apply a unitary to AA'
- trace out A_2
Catalytic decoupling

- Generalize decoupling twofold:
 - drop randomization condition
 - allow free mixed ancillary states

Step-by-step definition:
- Bipartite system $A \otimes E$ in a mixed state ρ_{AE}
- add ancillary system A' in a fixed state
- divide system $A \otimes A'$ into two parts, $A \otimes A' \cong A_1 \otimes A_2$
- apply a unitary to AA'
- trace out A_2
- how big do we have to choose A_2 here?
Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let \(\rho \in B(H_A \otimes H_E) \) be a quantum state. Then, for any \(0 \leq \varepsilon' < \varepsilon \), catalytic decoupling with error \(\varepsilon \) can be achieved with remainder system size \(\log |A_2| \approx \frac{1}{2} I_{\max}(E:A) \rho \).

Conversely catalytic decoupling is impossible whenever \(\log |A_2| < \frac{1}{2} I_{\max}(E:A) \rho \).

▶ max-mutual information:

\[
I_{\max}(A:B)_\rho = \min_{\sigma_B} D_{\max}(\rho_{AB} \parallel \rho_A \otimes \sigma_B)
\]

▶ \(D_{\max}(\rho \parallel \sigma) = \min_{\lambda \in \mathbb{R}} \{ \lambda \sigma \geq \rho \} \)

Two proofs, one using the techniques from Anshu et al. and Berta et al. respectively.
Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let $\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E)$ be a quantum state. Then, for any $0 \leq \varepsilon' < \varepsilon$ catalytic decoupling with error ε can be achieved with remainder system size

$$\log |A_2| \approx \frac{1}{2} I_{\max}^{\varepsilon'}(E : A)_{\rho}.$$

Conversely catalytic decoupling is impossible whenever

$$\log |A_2| < \frac{1}{2} I_{\max}^{\varepsilon}(E : A)_{\rho}.$$
Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let $\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E)$ be a quantum state. Then, for any $0 \leq \epsilon' < \epsilon$ catalytic decoupling with error ϵ can be achieved with remainder system size

$$\log |A_2| \approx \frac{1}{2} I_{\max}^{\epsilon'}(E : A)_{\rho}.$$

Conversely catalytic decoupling is impossible whenever

$$\log |A_2| < \frac{1}{2} I_{\max}^{\epsilon}(E : A)_{\rho}.$$

- max-mutual information:

$$I_{\max}(A : B)_{\rho} = \min_{\sigma_B} D_{\max}(\rho_{AB} || \rho_A \otimes \sigma_B)$$
Characterization

Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let $\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E)$ be a quantum state. Then, for any $0 \leq \varepsilon' < \varepsilon$ catalytic decoupling with error ε can be achieved with remainder system size

$$\log |A_2| \approx \frac{1}{2} I_{\max}^{\varepsilon'}(E : A)_{\rho}.$$

Conversely catalytic decoupling is impossible whenever

$$\log |A_2| < \frac{1}{2} I_{\max}^\varepsilon(E : A)_{\rho}.$$

- max-mutual information:
 $$I_{\max}(A : B)_{\rho} = \min_{\sigma_B} D_{\max}(\rho_{AB} \|
ho_A \otimes \sigma_B)$$
- $D_{\max}(\rho \| \sigma) = \min\{\lambda \in \mathbb{R} | 2^\lambda \sigma \geq \rho\}$
Theorem (CM, Berta, Dupuis, Renner, Christandl)

Let \(\rho_{AE} \in \mathcal{B}(\mathcal{H}_A \otimes \mathcal{H}_E) \) be a quantum state. Then, for any \(0 \leq \epsilon' < \epsilon \) catalytic decoupling with error \(\epsilon \) can be achieved with remainder system size

\[
\log |A_2| \approx \frac{1}{2} I_{\max}(E : A)_{\rho}.
\]

Conversely catalytic decoupling is impossible whenever

\[
\log |A_2| < \frac{1}{2} I_{\max}(E : A)_{\rho}.
\]

- max-mutual information:
 \[
 I_{\max}(A : B)_{\rho} = \min_{\sigma_B} D_{\max}(\rho_{AB} \parallel \rho_A \otimes \sigma_B)
 \]
 \[
 D_{\max}(\rho \parallel \sigma) = \min\{\lambda \in \mathbb{R} | 2^{\lambda} \sigma \geq \rho\}
 \]
- Two proofs, one using the techniques from Anshu et al. and Berta et al. respectively
Denote the minimal remainder system size $\log |A_2|$ by $R^\varepsilon_c(A : E)_\rho$.

Minimal remainder system size if $\rho = \sigma \otimes n$:

$$R^\varepsilon_c(A : E)_\rho \approx \frac{1}{2} \left[nI(A : E)\sigma + \sqrt{nV}I(A : E)\sigma \Phi^{-1}(\varepsilon) \right] + O(\log n)$$

Unitary randomizing and partial trace models equivalent with ancilla.
Properties

- Denote the minimal remainder system size \(\log |A_2| \) by
 \(R_c^\varepsilon(A : E)_\rho \)

- Minimal remainder system size if \(\rho = \sigma \otimes \sigma^\otimes n \):
 \[
 \frac{1}{n} R_c^\varepsilon(A : E)_\rho \approx \frac{1}{2} I(A : E)_\sigma
 \]
Properties

- Denote the minimal remainder system size \(\log |A_2| \) by \(R_c^\varepsilon(A : E)_\rho \).

- Minimal remainder system size if \(\rho = \sigma \otimes n \):
 \[
 \frac{1}{n} R_c^\varepsilon(A : E)_\rho \approx \frac{1}{2} I(A : E)_\sigma
 \]

 Asymptotically, the ancilla becomes unnecessary, usual randomization condition becomes redundant.
Properties

- Denote the minimal remainder system size \(\log |A_2|\) by \(R_c^\varepsilon(A : E)_\rho\)
- Minimal remainder system size if \(\rho = \sigma \otimes n\):
 \[
 \frac{1}{n} R_c^\varepsilon(A : E)_\rho \approx \frac{1}{2} I(A : E)_\sigma
 \]
 Asymptotically the ancilla becomes unnecessary, usual randomization condition becomes redundant
- Tightness of characterization allows derivation of a 2nd order term:
 \[
 R_c^\varepsilon(A : E)_\rho = \frac{1}{2} \left[nI(A : E)_\sigma + \sqrt{nV_l(A : E)_\sigma} \Phi^{-1}(\varepsilon) \right] + \mathcal{O}(\log n)
 \]
Properties

- Denote the minimal remainder system size \(\log |A_2| \) by \(R_c^\varepsilon(A : E) \rho \)

- Minimal remainder system size if \(\rho = \sigma \otimes n \):

 \[
 \frac{1}{n} R_c^\varepsilon(A : E) \rho \approx \frac{1}{2} \text{I}(A : E) \sigma
 \]

 Asymptotically the ancilla becomes unnecessary, usual randomization condition becomes redundant.

- Tightness of characterization allows derivation of a 2nd order term:

 \[
 R_c^\varepsilon(A : E) \rho = \frac{1}{2} \left[n \text{I}(A : E) \sigma + \sqrt{nV_1(A : E) \sigma \Phi^{-1}(\varepsilon)} \right] + \mathcal{O}(\log n)
 \]

- Unitary randomizing and partial trace models equivalent with ancilla.
Conditional Erasure
Erasure of conditional correlations

\[\rho_{AER} \]
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information

 $$I(A : E | R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_{R})$$
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[I(A : E|R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R) \]
- Recoverability: if $I(A : E|R) = \varepsilon$ small,
 \[\rho_{AER} \approx O(\varepsilon) \mathcal{R}_{R \rightarrow RA}(\rho_{ER}) \text{ for some quantum channel } \mathcal{R}. \]
 (Fawzi, Renner ’14)
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[I(A : E|R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R) \]
- Recoverability: if $I(A : E|R) = \varepsilon$ small,
 \[\rho_{AER} \approx O(\varepsilon) \mathcal{R}_{R\rightarrow RA}(\rho_{ER}) \] for some quantum channel \mathcal{R}.
 (Fawzi, Renner ’14)
Erasure of conditional correlations

- ρ_{AER}

- Conditional quantum mutual information

 $I(A : E|R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R)$

- Recoverability: if $I(A : E|R) = \varepsilon$ small,

 $\rho_{AER} \approx O(\varepsilon) \mathcal{R}_{R \rightarrow RA}(\rho_{ER})$ for some quantum channel \mathcal{R}. (Fawzi, Renner ’14)
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[
 I(A : E | R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_{R})
 \]
- Recoverability: if $I(A : E | R) = \varepsilon$ small,
 $\rho_{AER} \approx O(\varepsilon) \mathcal{R}_{R \rightarrow RA}(\rho_{ER})$ for some quantum channel \mathcal{R}. (Fawzi, Renner ’14)
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[I(A : E|R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R) \]
- Recoverability: if \(I(A : E|R) = \varepsilon \) small,
 \[\rho_{AER} \approx \mathcal{O}(\varepsilon) \mathcal{R}_{R \rightarrow RA}(\rho_{ER}) \text{ for some quantum channel } \mathcal{R}. \]
 (Fawzi, Renner ’14)
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_{R}) \]
- Recoverability: if $I(A : E|R) = \varepsilon$ small,
 \[\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow RA}(\rho_{ER}) \text{ for some quantum channel } \mathcal{R}. \]
 (Fawzi, Renner '14)
- \Rightarrow All correlations of A and E mediated by R
Erasure of conditional correlations

- \(\rho_{AER} \)
- Conditional quantum mutual information
 \[I(A : E | R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R) \]
- Recoverability: if \(I(A : E | R) = \varepsilon \) small,
 \[\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \rightarrow RA}(\rho_{ER}) \] for some quantum channel \(\mathcal{R} \).
 (Fawzi, Renner ’14)
 - All correlations of \(A \) and \(E \) mediated by \(R \)
 - \(E - R - A \) is approximate quantum Markov chain
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[I(A : E|R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R) \]
- Recoverability: if $I(A : E|R) = \varepsilon$ small,
 \[\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R\rightarrow RA}(\rho_{ER}) \]
 for some quantum channel \mathcal{R}. (Fawzi, Renner '14)
- All correlations of A and E mediated by R
- $E - R - A$ is approximate quantum Markov chain
- $I(A : E|R)$ measures conditional correlations
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[I(A : E|R)_{\rho} = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_{R}) \]
- Recoverability: if $I(A : E|R) = \varepsilon$ small,
 $\rho_{AER} \approx_{\mathcal{O}(\varepsilon)} \mathcal{R}_{R \to RA}(\rho_{ER})$ for some quantum channel \mathcal{R}.
 (Fawzi, Renner '14)

\Rightarrow All correlations of A and E mediated by R
\Rightarrow $E - R - A$ is approximate quantum Markov chain

\Rightarrow $I(A : E|R)$ measures conditional correlations

\Rightarrow i.i.d. setting
Erasure of conditional correlations

- ρ_{AER}
- Conditional quantum mutual information
 \[I(A : E|R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R) \]
- Recoverability: if $I(A : E|R) = \epsilon$ small,
 \[\rho_{AER} \approx \mathcal{O}(\epsilon) \mathcal{R}_{R \rightarrow RA}(\rho_{ER}) \] for some quantum channel \mathcal{R}. (Fawzi, Renner '14)

\Rightarrow All correlations of A and E mediated by R

\Rightarrow $E - R - A$ is *approximate quantum Markov chain*

- $I(A : E|R)$ measures *conditional correlations*
- i.i.d. setting
- Recall: Erasure of correlations in ρ_{AE} operating on A costs $I(A : E)$ bits of noise.
Erasure of conditional correlations

ρ_{AER}

Conditional quantum mutual information

$I(A : E|R)_\rho = H(\rho_{AR}) + H(\rho_{ER}) - H(\rho_{AER}) - H(\rho_R)$

Recoverability: if $I(A : E|R) = \varepsilon$ small,

$\rho_{AER} \approx O(\varepsilon) \mathcal{R}_{R \rightarrow RA}(\rho_{ER})$ for some quantum channel \mathcal{R}.
(Fawzi, Renner ’14)

\Rightarrow All correlations of A and E mediated by R

\Rightarrow $E - R - A$ is approximate quantum Markov chain

$I(A : E|R)$ measures conditional correlations

i.i.d. setting

Recall: Erasure of correlations in ρ_{AE} operating on A costs

$I(A : E)$ bits of noise.

Can we erase conditional correlations by injecting $I(A : E|R)_\rho$ bits of noise into A?
Can we erase conditional correlations by injecting $I(A : E|R)_\rho$ bits of noise into A?

No, \exists Classical counterexample.
Can we erase conditional correlations by injecting $I(A : E|R)_\rho$ bits of noise into A?

No, \exists Classical counterexample.

Characterization for pure states: Noise $\gg I(A : E|R)$ necessary in general (Wakakuwa et al. ’15)
Can we erase conditional correlations by injecting $I(A : E|R)_\rho$ bits of noise into A?

\[\exists \text{ Classical counterexample.} \]

- Characterization for pure states: Noise $\gg I(A : E|R)$ necessary in general (Wakakuwa et al. ’15)
- Obvious solution in the classical case: condition on R!
State redistribution (SRD)

Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|$ AB

Alice has AC, Bob has B, Referee has R

their task: Alice has to send A to Bob

they can use entanglement

optimal communication rate $I(A: R | C)$ (Devetak and Yard '06)
Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$.
Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$

Alice has AC, Bob has B, Referee has R
State redistribution (SRD)

- Alice, Bob and a referee share a pure state $|\psi\rangle \langle \psi|_{ABCR}$
- Alice has AC, Bob has B, Referee has R
- their task: Alice has to send A to Bob

ψ
Alice, Bob and a referee share a pure state $|\psi\rangle\langle \psi|_{ABCR}$

Alice has AC, Bob has B, Referee has R

their task: Alice has to send A to Bob

they can use entanglement
State redistribution (SRD)

- Alice, Bob and a referee share a pure state $|\psi\rangle\langle\psi|_{ABCR}$
- Alice has AC, Bob has B, Referee has R
- their task: Alice has to send A to Bob
- they can use entanglement
- optimal communication rate $I(A : R|C)$ (Devetak and Yard ’06)
Deconstruction, conditional erasure I

- State ρ_{AER}
Deconstruction, conditional erasure I

- State ρ_{AER}
- quantum conditional operation on A conditioned on R:

\[\frac{A}{A'} \sim = \frac{A_1 A_2}{ \cdot} \]
- State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} *approximately* unchanged
State ρ_{AER}

quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} \textit{approximately} unchanged

allow ancilla like in catalytic decoupling
State ρ_{AER}

quantum conditional operation on A conditioned on R:
operation on AR, but ρ_{RE} approximately unchanged

allow ancilla like in catalytic decoupling

Step-by-step definition:
Deconstruction, conditional erasure I

- State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

Step-by-step definition:
- add ancillary system A' in a fixed state
Deconstruction, conditional erasure I

- State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

Step-by-step definition:
- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$

\[U_{RAA'}(\cdot)U_{RAA'}^\dagger \]
Deconstruction, conditional erasure I

- State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

Step-by-step definition:
- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$ that negligibly disturbs ρ_{ER}
Deconstruction, conditional erasure I

- State ρ_{AER}
- quantum conditional operation on A conditioned on R: operation on AR, but ρ_{RE} approximately unchanged
- allow ancilla like in catalytic decoupling

Step-by-step definition:
- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$ that negligibly disturbs ρ_{ER}
- divide system AA' into two parts, $AA' \cong A_1A_2$
State ρ_{AER}

quantum conditional operation on A conditioned on R:
operation on AR, but ρ_{RE} approximately unchanged

allow ancilla like in catalytic decoupling

Step-by-step definition:
- add ancillary system A' in a fixed state
- apply a unitary $U_{RAA'}$ that negligibly disturbs ρ_{ER}
- divide system AA' into two parts, $AA' \cong A_1A_2$
- trace out A_2
Different goals:

- Make $E - R - A_1$ an approximate quantum Markov chain,
- Deconstruction of correlations
- Make A_1 product with ER,
- Conditional erasure of correlations

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A : E | R)$ bits of noise.

Both tasks have same optimal rate $I(A : E | R)$ of noise asymptotically.

Operational interpretation of quantum conditional mutual information!
Deconstruction, conditional erasure II

- Different goals:
 - make $E - R - A_1$ an approximate quantum Markov chain, *deconstruction* of correlations

\[\begin{align*}
E & \approx \epsilon \\
\end{align*} \]

Theorem (Berta, Brandao, CM, Wilde)
Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A_1 : E | R)$ bits of noise.

- Both tasks have same optimal rate $I(A_1 : E | R)$ of noise asymptotically

Operational interpretation of quantum conditional mutual information!
Different goals:

- make $E - R - A_1$ an approximate quantum Markov chain, \textit{deconstruction} of correlations
- make A_1 product with ER, \textit{conditional erasure} of correlations (\Rightarrow deconstruction of correlations)
Deconstruction, conditional erasure II

- Different goals:
 - make $E - R - A_1$ an approximate quantum Markov chain, \textit{deconstruction} of correlations
 - make A_1 product with ER, \textit{conditional erasure} of correlations (\Rightarrow deconstruction of correlations)

Theorem (Berta, Brandao, CM, Wilde)

\textit{Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A : E|R)$ bits of noise.}
Deconstruction, conditional erasure II

- Different goals:
 - make $E \rightarrow R \rightarrow A_1$ an approximate quantum Markov chain, deconstruction of correlations
 - make A_1 product with ER, conditional erasure of correlations (\Rightarrow deconstruction of correlations)

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A : E|R)$ bits of noise.

- Both tasks have same optimal rate $I(A : E|R)$ of noise asymptotically
Different goals:

- make $E - R - A_1$ an approximate quantum Markov chain, *deconstruction* of correlations
- make A_1 product with ER, *conditional erasure* of correlations (\Rightarrow deconstruction of correlations)

Theorem (Berta, Brandao, CM, Wilde)

Conditional erasure of correlations is equivalent to quantum state redistribution. Asymptotically, deconstruction needs at least a rate of $I(A : E | R)$ bits of noise.

- Both tasks have same optimal rate $I(A : E | R)$ of noise asymptotically
- Operational interpretation of quantum conditional mutual information!
Decoupling

$I(A : E)_\rho$

one-shot

Catalytic Decoupling

$I_{\text{max}}^\varepsilon (A : E)_\rho$

side information

Conditional Erasure

$I(A : E|R)_\rho$

simple one-shot state merging

operational interpretations of quantum discord and squashed entanglement
backup slides
One-shot coherent state merging (Berta et al. ’09)

Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$. Their task: Alice has to send her part of the state to Bob. Alice needs ancilla – give purification to Bob ⇒ entangled resource!
Application

One-shot coherent state merging (Berta et al. ’09)

- Now: easy!
One-shot coherent state merging (Berta et al. ’09)

Now: easy! Difficult parts hidden in achievability of CD.
One-shot coherent state merging (Berta et al. ’09)

- Now: easy! Difficult parts hidden in achievability of CD.
- Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
One-shot coherent state merging (Berta et al. ’09)

- Now: easy! Difficult parts hidden in achievability of CD.
- Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
- Their task: Alice has to send her part of the state to Bob

![Diagram showing the quantum state $|\psi\rangle\langle\psi|_{ABR}$ among Alice, Bob, and the referee R.](image)
One-shot coherent state merging (Berta et al. ’09)

- Now: easy! Difficult parts hidden in achievability of CD.
- Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
- their task: Alice has to send her part of the state to Bob
- Alice needs ancilla – give purification to Bob \Rightarrow entangled resource!
One-shot coherent state merging (Berta et al. ’09)

- Now: easy! Difficult parts hidden in achievability of CD.
- Alice, Bob and a referee share a quantum state $|\psi\rangle\langle\psi|_{ABR}$.
- Their task: Alice has to send her part of the state to Bob.
- Alice needs ancilla – give purification to Bob \Rightarrow entangled resource!
- From here: protocol as in the asymptotic case.
One-shot coherent state merging (Berta et al. ’09)
► Now: easy! Difficult parts hidden in achievability of CD.
► Alice, Bob and a referee share a quantum state $|\psi \rangle \langle \psi |_{ABR}$.
► their task: Alice has to send her part of the state to Bob
► Alice needs ancilla – give purification to Bob \Rightarrow entangled resource!
► from here: protocol as in the asymptotic case
\Rightarrow one-shot state merging possible with $\frac{1}{2} I_{\max}^{\varepsilon}(A : R)$ qbits of communication
Applications

- 2-party state ρ_{AB}, measurement $\Lambda_{A\rightarrow X}$
Applications

- 2-party state ρ_{AB}, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord:
 $$D(A : B)_{\rho,\Lambda} = I(A : B)_{\rho} - I(X : B)_{\Lambda(\rho)}$$

- Original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

Theorem (Berta, Brandao, CM, Wilde)
$$D(A : B)_{\rho,\Lambda}$$ is equal to the rate of noise necessary to simulate the loss of correlations incurred by $\rho \otimes n$ under the action of $\Lambda \otimes n$.

- Squashed entanglement:
 $$E_{sq}(A : B)_{\rho} = \inf \sigma I(A : B | E)_{\sigma}, \inf \text{ over all } \sigma_{ABE} \text{ with } \text{tr} E_{\sigma_{ABE}} = \rho_{AB}$$

- Squashed entanglement is amount of noise necessary to make many i.i.d. copies of ρ_{AB} close to separable by operation on A and arbitrary catalytic side information E.

21 / 21
Applications

- 2-party state ρ_{AB}, measurement $\Lambda_{A\rightarrow X}$
- (unoptimized) quantum discord:
 $$D(\bar{A} : B)_{\rho, \Lambda} = I(A : B)_{\rho} - I(X : B)_{\Lambda(\rho)}$$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek ’00)
Applications

- 2-party state ρ_{AB}, measurement $\Lambda_{A\rightarrow X}$
- (unoptimized) quantum discord:
 $$D(\bar{A} : B)_{\rho,\Lambda} = I(A : B)_\rho - I(X : B)_{\Lambda(\rho)}$$
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek ’00)

Theorem (Berta, Brandao, CM, Wilde)

$D(\bar{A} : B)_{\rho,\Lambda}$ is equal to the rate of noise necessary to simulate the loss of correlations incurred by $\rho^\otimes n$ under the action of $\Lambda^\otimes n$.
Applications

- 2-party state ρ_{AB}, measurement $\Lambda_{A\rightarrow X}$
- (unoptimized) quantum discord:
 \[D(\bar{A} : B)_{\rho,\Lambda} = I(A : B)_{\rho} - I(X : B)_{\Lambda(\rho)} \]
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

Theorem (Berta, Brandao, CM, Wilde)

$D(\bar{A} : B)_{\rho,\Lambda}$ is equal to the rate of noise necessary to simulate the loss of correlations incurred by $\rho^{\otimes n}$ under the action of $\Lambda^{\otimes n}$.

- Squashed entanglement: $E_{sq}(A : B)_{\rho} = \inf_{\sigma} I(A : B|E)_{\sigma}$, inf over all σ_{ABE} with $\text{tr}_E \sigma_{ABE} = \rho_{AB}$
Applications

- 2-party state ρ_{AB}, measurement $\Lambda_{A \rightarrow X}$
- (unoptimized) quantum discord:
 \[D(\bar{A} : B)_{\rho, \Lambda} = I(A : B)_{\rho} - I(X : B)_{\Lambda(\rho)} \]
- original interpretation: decrease of correlations under interaction with environment ("einselection", Zurek '00)

Theorem (Berta, Brandao, CM, Wilde)

$D(\bar{A} : B)_{\rho, \Lambda}$ is equal to the rate of noise necessary to simulate the loss of correlations incurred by $\rho^\otimes n$ under the action of $\Lambda^\otimes n$.

- Squashed entanglement: $E_{sq}(A : B)_{\rho} = \inf_{\sigma} I(A : B|E)_{\sigma}$, inf over all σ_{ABE} with $\text{tr}_E \sigma_{ABE} = \rho_{AB}$
- Squashed entanglement is amount of noise necessary to make many i.i.d. copies of ρ_{AB} close to separable by operation on A and arbitrary catalytic side information E