From fully quantum thermodynamical identities to a second law equality

Alvaro Alhambra, Lluis Masanes, Jonathan Oppenheim, Chris Perry

Fluctuating States

Fluctuating Work
Thermodynamics is an information theory

$W = kT \log 2$

Maxwell
Szilard
Landauer
Bennett
What do we mean by $W=kT\log_2$? (consider the limit of perfect erasure)

A) $W=kT\log_2$ on average, but there will be fluctuations around this value.

B) We can achieve perfect erasure.

C) By using slightly more work on average, you can sometimes gain work when you erase.
What do we mean by $W=kT\log_2$?
(consider the limit of perfect erasure)

A) $W=kT\log_2$ on average, but there will be fluctuations around this value.

B) We can achieve perfect erasure.

C) By using slightly more work on average, you can sometimes gain work when you erase.

D) None of these statements are true.
What do we mean by $W = kT \log_2$?
(consider the limit of perfect erasure)

A) $W = kT \log_2$ on average, but there will be fluctuations around this value.
B) We can achieve perfect erasure.
C) By using slightly more work on average, you can sometimes gain work when you erase.
D) None of these statements are true.
E) This quiz is undecidable.
Fluctuating work in erasure

\[
\sum_{s', w} P(s', w | s) = 1
\]

\[
\sum_{s, w} P(s', w | s) e^{\beta (E_s - E_{s+w})} = 1
\]

\[
e^{\beta w_0} + e^{\beta w_1} = 1/(1 - \epsilon)
\]

\[
e^{\beta \tilde{w}_0} + e^{\beta \tilde{w}_1} = 1/\epsilon
\]
Main Results

- QIT strengthening of Stochastic Thermodynamics
- Generalisations of doubly-stochastic maps, majorisation
- Second law of thermodynamics as an equality (fine grained free energy)
- Fully quantum identity \rightarrow Stochastic Thermodynamics
- Fluctuations of work and of states
- Proof and quantification of third law of thermodynamics
Outline

• Review of thermodynamics (Macroscopic, QIT)
• Equalities for work fluctuations
• Quantum identities
• Outlook
Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
- Quantum identities
- Outlook
3 laws of thermodynamics

0) If R_1 is in equilibrium with R_2 and R_3 then R_2 is in equilibrium with R_3

1) $dE = dQ - dW$ (energy conservation)

2) Heat can never pass from a colder body to a warmer body without some other change occurring. – Clausius

3) One can never attain $T=0$ in a finite number of steps
The second law

Heat can never pass from a colder body to a warmer body without some other change occurring – Clausius
The second law

\[\langle W \rangle \leq \Delta F \quad \text{In any cyclic process} \]
Free Energy

\[F = \langle E \rangle - TS \]

\[\langle W \rangle_{\text{rev}} = F(\rho_{\text{initial}}) - F(\rho_{\text{final}}) \]

\[\rho_{\text{initial}} \rightarrow \rho_{\text{final}} \text{ iff } \langle W \rangle \leq \Delta F \]
Free Energy

\[F = \langle E \rangle - TS \]

\[\langle W \rangle_{\text{rev}} = F(\rho_{\text{initial}}) - F(\rho_{\text{final}}) \]

\[\rho_{\text{initial}} \rightarrow \rho_{\text{final}} \text{ iff } \langle W \rangle \leq \Delta F \]

This is just the first order term of an equality!
In reversible theories and under minor assumptions, relative entropy distance to free states \mathcal{F} is the unique measure of the resource (Horodecki et. al. 2011).

In thermodynamics, \mathcal{F} will turn out to be the Gibbs state ρ_β and the measure is $F(\rho) - F(\rho_\beta)$.

But thermodynamics can also be irreversible.
What is Thermodynamics??

A resource theoretic approach: \(\Gamma \)

- \((\rho_s, H_s)\)
- adding **free states** \(\rho_B, H_B\)
- work system \(\rho_W, H_w\)

- energy conserving unitaries \(U\)
 - **1st law** \([U, H_s + H_w + H_B] = 0 \)
- tracing out
- **can allow changing Hamiltonian by adding switch bit**
- translation invariant on \(W\): \([U, \Delta_w] = 0 \quad [\Delta_w, H_w] = i \)

Streater (1995)
Janzig et. al. (2000)
Horodecki, JO (2011)
Skrzypczyk et. al. (2013)
Brandao et. al. (2015)
Work

or in the micro - regime

\[H_w = \sum_{w=-\infty}^{\infty} w |w\rangle \langle w| \]

\[e^{i\Delta w} = \sum_{w=-\infty}^{\infty} |w + 1\rangle \langle w| \]
Broadest definition of thermo

- H_{int}
- $H(t)$
- Implicit battery: arbitrary U, and take $W = \text{tr} HP - \text{tr} HU p U^\dagger$
- Implemented using very crude control (Perry et. al. 2016)
- C.f. catalytic transformations (Brandao et. al. 2015)

What is the cost of a state transformation? (2nd law)
What do we mean by work?

- **No work:** Ruch, Mead (1975); Janzig (2000); Horodecki et. al. (2003); Horodecki, JO (2011)

- **Deterministic or worst case work:** Dahlsten et al. (2010); Del Rio et. al. (2011); Horodecki, JO (2011); Aaberg (2011); Faist et. al. (2013), Egloff (2015)

- **Average work:** Brandao et. al. (2011); Skrzypczyk et. al. (2013); Korzekwa et. al (2015)

- **Fluctuating work:** Jarzynski (1997); Crooks (1999); Tasaki (1999)
Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
- Quantum identities
- Outlook
When can we go from ρ to σ?
(2nd law)

$$\langle W \rangle \leq F(\rho) - F(\sigma)$$

Many Second Laws
$H=0$ (Noisy Operations), no work

majorisation

$\rho \rightarrow \sigma \text{ iff } \rho > \sigma \quad p(1) \geq p(2) \geq p(3) \ldots \quad \sum_k p(k) \geq \sum_k q(k) \ \forall \ k$

$q(s') = \sum_s P(s'|s)p(s)$

Horodecki et. al. 2003
(Thermal Operations), deterministic work

Thermo-majorisation

\[p(1)e^{\beta E_1} \geq p(2)e^{\beta E_2} \geq p(3)e^{\beta E_3} \]
(β-ordering)

\[q(s') = \sum_s P(s'|s)p(s) \]

\[\sum_{s} P(s'|s)e^{-\beta E_s} = e^{-\beta E_{s'}} \]

\[\sum_{s'} P(s'|s) = 1 \]
Fluctuating work

\[\rho \rightarrow \sigma \text{ if f } \]

\[\sum_{s,w} P(s',w|s) e^{\beta(E_s - E_w)} = 1 \]

\[\sum_{s',w} P(s',w|s) = 1 \]

\[q(s',w) = \sum_s P(s'w|s)p(s) \]

\[\sum_{s',s,w} P(s',w|s) e^{\beta(E_{s'} - E_s + w)} \frac{p(s)}{p(s')p(s')} = \sum_{s'} p(s') \]

\[\langle e^{\beta(f_s - f_s + w)} \rangle = 1 \]

2nd law equality

Classical derivation: Seifert (2012)
Corrections to second law

\[\langle e^{\beta (f_s' - f_s + w)} \rangle = 1 \]

\[f_s := E_s + T \log P(s) \]

\[F = \langle f_s \rangle \]

\[= \langle E \rangle - TS \]

\[\langle f_s' - f_s + w \rangle \leq 0 \]

Standard 2nd law

\[W \leq \Delta F \]

\[\sum_{k=1}^{N} \frac{\beta^k}{k!} \langle (f_s' - f_s + w)^k \rangle \leq 0 \]
Fluctuating work in erasure

\[\sum_{s, w} P(s', w | s) e^{\beta (E_s - E_{s+w})} = 1 \]

\[e^{\beta w_0} + e^{\beta w_1} = 1/(1 - \epsilon) \]

\[e^{\beta \bar{w}_0} + e^{\beta \bar{w}_1} = 1/\epsilon \]

Same considerations apply to non-deterministic case
What do we mean by $W=kT \log_2$? (consider the limit of perfect erasure)

A) $W=kT \log_2$ on average, but there will be fluctuations around this value.

B) We can achieve perfect erasure.

C) By using slightly more work on average, you can sometimes gain work when you erase.

D) None of these statements are true.

E) This quiz is undecidable.
no work to fluctuating work

\[
\sum_{s'} P(s'|s) = 1
\]

doubly stochastic maps

\[
\sum_{s} P(s'|s) = 1
\]

majorisation

\[
\sum_{s} P(s'|s) = 1
\]

Gibbs-stochastic maps

\[
\sum_{s'} P(s'|s) e^{\beta(E_{s'} - E_s)} = 1
\]

thermo-majorisation

\[
\sum_{s'} P(s'|s) = 1
\]

fluctuating work

\[
\sum_{s'} P(s'|s) e^{\beta(E_{s'} - E_s + w)} = 1
\]

linear program

\[
\sum_{s,w} P(s', w|s) e^{\beta(E_{s'} - E_s + w)} = 1
\]
Thermo-majorisation curves

\[w(s, s') = \alpha_s - \gamma_{s'} \]
Outline

- Review of thermodynamics (Macroscopic, QIT)
- Equalities for work fluctuations
 - Quantum identities
- Outlook
Quantum identity

\[tr_W \left[\mathcal{F}_{H_s+H_w} \Gamma_{SW} \mathcal{F}_{H_s+H_w}^{-1} \right] 1_s \otimes \rho_W = 1_s \]

\[\mathcal{F}_H (\rho) := e^{\frac{\beta}{2} H} \rho e^{\frac{\beta}{2} H} \]

\[\Gamma_{SW} = tr_B U \rho_{SWB} U^\dagger \]

\[\sum_{s,w} P(s', w | s) e^{\beta (E_{s'} - E_s + w)} = 1 \]

For classical states

\[P(s', w | s) = tr[|s'\rangle \langle s'| \otimes |w\rangle \langle w| \Gamma_{SW} (|s\rangle \langle s| \otimes |0\rangle \langle 0|)] \]

c.f. Aaberg (2016)
Quantum identity

$$\text{tr}_W \left(J_{H_S'+H_W} \Gamma_{SW} J_{H_S+H_W}^{-1} \right) \left(1_S \otimes \rho_W \right)$$

$$= \text{tr}_W J_{H_S'+H_W} \left(\text{tr}_B \left[U J_{H_S+H_W}^{-1} \frac{e^{-\beta H_B}}{Z_B} (1_S \otimes \rho_W) U^\dagger \right] \right)$$

$$= \text{tr}_W J_{H_S'+H_W} \left(\frac{1}{Z_B} \text{tr}_B \left[U J_{H_S+H_B+H_W}^{-1} (1_{SB} \otimes \rho_W) U^\dagger \right] \right)$$

$$= \text{tr}_W J_{H_S'+H_W} \left(\frac{1}{Z_B} \text{tr}_B \left[J_{H_S'+H_B+H_W}^{-1} (U 1_{SB} \otimes \rho_W U^\dagger) \right] \right)$$

$$= \text{tr}_B W \left(\frac{-\beta H_B}{Z_B} U (1_{SB} \otimes \rho_W) U^\dagger \right)$$

$$= \text{tr}_B \left(\frac{-\beta H_B}{Z_B} 1_{SB} \right) = 1_S .$$

Masanes, JO (2014)
Fully quantum identities

<table>
<thead>
<tr>
<th>Generalised Gibbs-stochastic</th>
<th>(\text{tr}W \left(\mathcal{J}{H_s' + H_W} \Gamma_{SW} \mathcal{J}_{H_s + H_W}^{-1} \right) (1_S \otimes \rho_W) = 1_S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Law equality</td>
<td>(\text{tr}{SW} \left[\left(\mathcal{J}{T \ln \rho_s'} \mathcal{J}{H_s' + H_W} \Gamma{SW} \mathcal{J}{H_s + H_W}^{-1} \mathcal{J}{T \ln \rho_s}^{-1} \right) (\rho_s \otimes \rho_W) \right] = 1)</td>
</tr>
<tr>
<td>Generalised Jarzynski equality</td>
<td>(\text{tr}{SW} \left[\left(\mathcal{J}{H_W} \Gamma_{SW} \mathcal{J}{H_s + H_W}^{-1} \mathcal{J}{T \ln \rho_s}^{-1} \right) (\rho_s \otimes \rho_W) \right] = Z'_s)</td>
</tr>
<tr>
<td>Crooks equation(^1) (Petz recovery)</td>
<td>(\mathcal{J}{H_s' + H_W} \Gamma{SW} \mathcal{J}{H_s + H_W}^{-1/2} = \Theta{SW}^*)</td>
</tr>
</tbody>
</table>

\(^1\) c.f. Åberg (2016)
Quantum identities w/ diagonal input

| Generalised Gibbs-stochastic | \[
\sum_{s,w} P(s',w|s) e^{\beta(E_{s'} - E_s + w)} = 1
\] |
|-------------------------------|--|
| Second Law equality | \[
\langle e^{\beta(f_{s'} - f_s + w)} \rangle = 1
\] |
| Generalised Jarzynski equality| \[
\langle e^{\beta(w - f_s)} \rangle = Z'_S
| Crooks equation (Petz recovery)| \[
\frac{p_{\text{forward}}(w, s, s')}{p_{\text{back}}(-w, s, s')} = e^{-\beta w} \frac{Z'_S}{Z_S}
\] |
Outline

• Review of thermodynamics (Macroscopic, QIT)
• Equalities for work fluctuations
• Quantum identities

• Outlook
Outlook and open questions

- Fluctuations of states
 - Probabilistic transformation (LOCC: Vidal 1999, Jonathan & Plenio 1999), Alhambra et. al. (2014); Renes (2015); Narasimhachar, Gour (2016)

- Generalised third laws
 - Reeb, Wolf (2013)
 - Thermal machines: Masanes, JO (2014)

- Fully quantum fluctuations (non-commuting case)

- Recovery Maps
 - Alhambra et. al. (2015), Åberg (2016), Alhambra et.al. (2016)

- Embezzlement of work? (Brandao et. al. 2015)

- Autonomous machines and clocks
 - Horodecki et. al. (2011), Woods et. al. (2016)
Probabilistic state transformations

\[\rho \xrightarrow{W} \sigma \]

\[\rho \rightarrow \rho' = p^* \sigma + (1-p^*)X \]

\[2^{W_{\rho \Rightarrow \sigma}} \leq p^* \leq 2^{-W_{\sigma \Rightarrow \rho}} \]

\[p^* = \min_{l \in 1, 2...n} \frac{V_l(\rho)}{V_l(\sigma)} \]

\[V_l(\rho) = \sum_{s=1}^{l} p(s) \]

c.f. entanglement theory
G. Vidal (1999)
Jonathan, Plenio (1999)
Probabilistic state transformations

\[p^* = \min_{l \in 1, 2 \ldots n} \frac{V_l(\rho)}{V_l(\sigma)} \leq p^* \leq 2^{-W_{\sigma \Rightarrow \rho}} \leq 2^{W_{\rho \Rightarrow \sigma}} \]
Probabilistic state transformations

\[p^* = \min_{l \in 1, 2...n} \frac{V_l(\rho)}{V_l(\sigma)} \]

\[\sum_s T(s'|s)e^{-\beta E_s} \leq e^{-\beta E_{s'}} \]

\[\sum_s T(s'|s)p(s) \geq p^*p(s') \]

Renes (2015)
Quantitative third law
(Masanes, JO; to appear in Nat. Comm.)

Heat Theorem (Planck 1911): when the temperature of a pure substance approaches absolute zero, its entropy approaches zero

Unattainability Principle (Nernst 1912): any thermodynamical process cannot attain absolute zero in a finite number of steps or within a finite time

\[T' \geq \frac{\alpha T}{t^{2d+1}} \]
Thermal Machines

- Like Turing Machines
- In a finite time, they interact with a finite volume and inject a finite amount of work

\[t \geq \frac{1}{v} V^{1/d} \]

\[t \geq \frac{1}{u} w_{max} \]

- Bath of volume V has sub-exponential density of states \(\Omega(E) \)
Outlook and open questions

• Fluctuations of states
 • Probabilistic transformation (LOCC: Vidal 1999, Jonathan & Plenio 1999), Alhambra et. al. (2014); Renes (2015); Narasimhachar, Gour (2016)

• Generalised third laws
 • Reeb, Wolf (2013)
 • Thermal machines: Masanes, JO (2014)

• Fully quantum fluctuations (non-commuting case)

• Recovery Maps
 • Alhambra et. al. (2015), Åberg (2016), Alhambra et.al. (2016)

• Embezzlement of work? (Brandao et. al. 2015)

• Autonomous machines and clocks
 • Horodecki et. al. (2011), Woods et. al. (2016)