On preparing ground states of gapped Hamiltonians:
An efficient Quantum Lovász Local Lemma

András Gilyén
QuSoft, CWI, Amsterdam, Netherlands

Joint work with:
Or Sattath
Hebrew University and MIT
Ground states and frustration

- Understanding ground states is important, e.g., in quantum chemistry
Ground states and frustration

- Understanding ground states is important, e.g., in quantum chemistry
- Local Hamiltonians can describe various many-body quantum systems
Ground states and frustration

- Understanding ground states is important, e.g., in quantum chemistry
- Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

\[H = \sum_{i=1}^{m} H_i \] is k-local: each term \(H_i \) acts non-trivially on \(k \) qudits (or qudits)
Ground states and frustration

- Understanding ground states is important, e.g., in quantum chemistry
- Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

\[H = \sum_{i=1}^{m} H_i \]

- Each term \(H_i \) acts non-trivially on \(k \) qudits (or qudits)

- Local Hamiltonians can have interesting ground state structures
Ground states and frustration

- Understanding ground states is important, e.g., in quantum chemistry
- Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

\[H = \sum_{i=1}^{m} H_i \] is \(k \)-local: each term \(H_i \) acts non-trivially on \(k \) qudits (or qudits)

- Local Hamiltonians can have interesting ground state structures

Frustration-freeness

\[H = \sum_{i=1}^{m} H_i \] is frustration-free, iff \(\exists |\psi\rangle \) s.t. \(\langle \psi | H_i |\psi\rangle \) is minimal \(\forall i \in [m] \)
Ground states and frustration

- Understanding ground states is important, e.g., in quantum chemistry
- Local Hamiltonians can describe various many-body quantum systems

k-local Hamiltonians

\[H = \sum_{i=1}^{m} H_i \] is k-local: each term \(H_i \) acts non-trivially on \(k \) qudits (or qudits)

- Local Hamiltonians can have interesting ground state structures

Frustration-freeness

\[H = \sum_{i=1}^{m} H_i \] is frustration-free, iff \(\exists \psi \) s.t. \(\langle \psi | H_i | \psi \rangle \) is minimal \(\forall i \in [m] \)

E.g.: Kitaev’s Toric Code
Frustration-freeness and quantum satisfiability (QSAT)

Projector description

\(\Pi_i \): orthogonal projector to the subspace of excited states of \(H_i \).

The frustration-free states of \(H = \sum_{i=1}^m H_i \) and \(H' = \sum_{i=1}^m \Pi_i \) are the same.
Frustration-freeness and quantum satisfiability (QSAT)

Projector description

Π_i: orthogonal projector to the subspace of excited states of H_i.
The frustration-free states of $H = \sum_{i=1}^{m} H_i$ and $H' = \sum_{i=1}^{m} \Pi_i$ are the same.

The decision problem k-QSAT

Input: orthogonal projectors $(\Pi_i)_{i \in [m]}$, s.t. each Π_i acts on k qubits
Task: decide if $\sum_{i=1}^{m} \Pi_i$ is frustration-free, i.e., $\exists \ket{\psi}: \ket{\psi} \in \bigcap_{i\in[m]} \ker(\Pi_i)$
Frustration-freeness and quantum satisfiability (QSAT)

Projector description

Π_i: orthogonal projector to the subspace of excited states of H_i.
The frustration-free states of $H = \sum_{i=1}^{m} H_i$ and $H' = \sum_{i=1}^{m} \Pi_i$ are the same.

The decision problem k-QSAT

Input: orthogonal projectors $(\Pi_i)_{i \in [m]}$, s.t. each Π_i acts on k qubits
Task: decide if $\sum_{i=1}^{m} \Pi_i$ is frustration-free, i.e., $\exists \psi : \psi \in \bigcap_{i \in [m]} \ker(\Pi_i)$

This is a generalisation of classical satisfiability (SAT)

$$\text{SAT} \quad \Rightarrow \quad \text{QSAT}$$

$$\left((x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \right) \quad \Rightarrow \quad \Pi_1 := |000\rangle\langle 000|_{123}$$

$$\Pi_2 := |101\rangle\langle 101|_{134}$$
Hardness of deciding frustration-freeness

The complexity of SAT and QSAT

- 2-SAT and 2-QSAT are easy to decide (they are in P (Bravyi ’06))
- 3-SAT and 3-QSAT are very hard to decide (NP-complete and QMA$_1$-complete (Kitaev; Gosset & Nagaj ’13), respectively)
Hardness of deciding frustration-freeness

The complexity of SAT and QSAT

- 2-SAT and 2-QSAT are easy to decide (they are in P (Bravyi ’06))
- 3-SAT and 3-QSAT are very hard to decide (NP-complete and QMA$_1$-complete (Kitaev; Gosset & Nagaj ’13), respectively)

- The Lovász Local Lemma (LLL) provides a sufficient condition for the satisfiability of k-SAT
- The Quantum LLL is a generalisation by Ambainis et al. for k-QSAT
The Lovász Local Lemma (LLL)

Application to k-SAT

- $\{C_i : i \in [m]\}$ are clauses of a k-SAT formula
- Each having at most d neighbours

If $p \cdot d \cdot e \leq 1$ ($p = 2^{-k}$, $e = 2.71\ldots$), then the formula is satisfiable.
The Lovász Local Lemma (LLL)

Application to k-SAT

– $\{C_i : i \in [m]\}$ are clauses of a k-SAT formula
– Each having at most d neighbours
If $p \cdot d \cdot e \leq 1$ ($p = 2^{-k}$, $e = 2.71 \ldots$), then the formula is satisfiable.

Generalisation to k-QSAT

– $\{\Pi_i : i \in [m]\}$ are k-local rank-r orthogonal projectors
– Each having at most d neighbours
If $p \cdot d \cdot e \leq 1$ ($p = r \cdot 2^{-k}$, $e = 2.71 \ldots$), then $\sum_{i=1}^{m} \Pi_i$ is frustration-free.
QLLL in pictures

\[x_1 \quad x_2 \quad x_3 \quad x_4 \]
\[x_5 \quad x_6 \quad x_7 \quad x_8 \]
\[x_9 \quad x_{10} \quad x_{11} \quad x_{12} \]
\[x_{13} \quad x_{14} \quad x_{15} \quad x_{16} \]
QLLL in pictures

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_9</th>
<th>x_{10}</th>
<th>x_{11}</th>
<th>x_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_{13}</th>
<th>x_{14}</th>
<th>x_{15}</th>
<th>x_{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Constraints are too interdependent
Constraints are *too interdependent*
Constraints are *too interdependent*.

Constraints are *too restrictive*.
The system is always frustration-free
Overview of results

<table>
<thead>
<tr>
<th></th>
<th>Classical</th>
<th>Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig.</td>
<td>Lovász & Erdős ('75)</td>
<td>Ambainis et al. ('09)</td>
</tr>
<tr>
<td>Best</td>
<td>Shearer ('85)</td>
<td>Sattath et al. ('16)</td>
</tr>
<tr>
<td>Orig.</td>
<td>Moser & Tardos ('09)</td>
<td>Schwarz et al.; Arad et al. ('13)</td>
</tr>
<tr>
<td>Best</td>
<td>Kolipaka & Szegedy ('12)</td>
<td>(only for commutative case)</td>
</tr>
</tbody>
</table>

No constructive version was known for non-commuting projectors
Overview of results

<table>
<thead>
<tr>
<th></th>
<th>Classical</th>
<th>Quantum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lovász & Erdős (’75)</td>
<td>Ambainis et al. (’09)</td>
</tr>
<tr>
<td></td>
<td>Shearer (’85)</td>
<td>Sattath et al. (’16)</td>
</tr>
<tr>
<td>Orig.</td>
<td>Moser & Tardos (’09)</td>
<td>Schwarz et al.; Arad et al. (’13)</td>
</tr>
<tr>
<td>Best</td>
<td>Kolipaka & Szegedy (’12)</td>
<td>(only for commutative case)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This talk: Best generality + non-comm. !!!</td>
</tr>
</tbody>
</table>

No constructive version was known for non-commuting projectors.
Finding happiness: Classical
The Moser-Tardos resampling algorithm (2009)

init uniform random assignment

for all $i \in [m]$:

fix(C_i)

fix(C_i):

check C_i

if it was “unhappy"

resample the bits of C_i

for all neighbours C_j of C_i

fix(C_j)
Classical: finding a “happy” assignment

The Moser-Tardos resampling algorithm (2009)

init uniform random assignment
for all $i \in [m]$:
 \text{fix}(C_i)

\text{fix}(C_i):
 check C_i
 if it was “unhappy”
 \text{resample} the bits of C_i
 for all neighbours C_j of C_i
 \text{fix}(C_j)
Classical: finding a “happy” assignment

The Moser-Tardos resampling algorithm (2009)

init uniform random assignment
for all \(i \in [m] \):
 fix\((C_i)\)

fix\((C_i)\):
 check \(C_i \)
 if it was “unhappy"
 resample the bits of \(C_i \)
 for all neighbours \(C_j \) of \(C_i \)
 fix\((C_j)\)
Classical: finding a “happy” assignment

The Moser-Tardos resampling algorithm (2009)

init uniform random assignment

for all $i \in [m] :$

fix(C_i)

fix(C_i):

check C_i

if it was “unhappy”

resample the bits of C_i

for all neighbours C_j of C_i

fix(C_j)
The Moser-Tardos resampling algorithm (2009)

\textbf{init} uniform random assignment

\texttt{for all } i \in [m] :
\texttt{fix}(C_i)

\texttt{fix}(C_i):
\texttt{check} C_i
\texttt{if} it was "unhappy"
\texttt{resample} the bits of \texttt{C}_i
\texttt{for all} neighbours \texttt{C}_j of \texttt{C}_i
\texttt{fix}(C_j)
The Moser-Tardos resampling algorithm (2009)

init uniform random assignment

for all $i \in [m]$:

- **fix**(C_i)

fix(C_i):

- **check** C_i
- **if** it was "unhappy"
- **resample** the bits of C_i
- **for all** neighbours C_j of C_i
- **fix**(C_j)
Classical: finding a “happy” assignment

The Moser-Tardos resampling algorithm (2009)

init uniform random assignment

for all $i \in [m]$:

\[\text{fix}(C_i) \]

fix(C_i):

check C_i

if it was “unhappy”

resample the bits of C_i

for all neighbours C_j of C_i

\[\text{fix}(C_j) \]
The Moser-Tardos resampling algorithm (2009)

init uniform random assignment

for all $i \in [m]:$

- **fix**(C_i)

fix(C_i):

 - **check** C_i
 - **if** it was "unhappy"
 - **resample** the bits of C_i
 - **for all** neighbours C_j of C_i
 - **fix**(C_j)
Commutative quantum: finding a “happy” state

The commutative quantum resampling algorithm

init uniform random qubits
for all $i \in [m]$:
 fix(Π_i)

fix(Π_i):
 measure Π_i
 if it was “unhappy"
 resample the qubits of Π_i
 for all neighbours Π_j of Π_i
 fix(Π_j)

Schwarz et al.; Arad et al. (2013)
Our simplified analysis

Our key lemma

Probability of doing a specific length-ℓ resample sequence is $\leq p^{\ell} \ (p = r/2^k)$
Our simplified analysis

Our key lemma

Probability of doing a specific length-ℓ resample sequence is $\leq p^\ell$ ($p = r/2^k$)

When does this algorithm terminate quickly?

- The number of length-3m resample sequences is $\ll (ed)^{3m}$ (easy)

\Rightarrow The probability of seeing a length-3m resample seq. $\ll (p \cdot d \cdot e)^{3m}$

If $p \cdot d \cdot e \leq 1$ then w.h.p. the alg. performs < 3m resamplings
“About your cat, Mr. Schrödinger – I have good news and bad news.”
Issues with non-commutativity

Becoming “unhappy” after seeing others “happy”

\[
\begin{align*}
X_1 & \quad X_2 \\
X_3 & \quad X_4
\end{align*}
\]
Issues with non-commutativity

Becoming “unhappy” after seeing others “happy”

\[x_1 \quad x_2 \]
\[x_3 \quad x_4 \]
Issues with non-commutativity

Becoming “unhappy” after seeing others “happy”
Issues with non-commutativity

Becoming “unhappy” after seeing others “happy”
Non-commutative quantum: finding a “happy” state

The quantum resampling algorithm

init uniform random qubits
for all \(i \in [m] \):
 \(\text{fix}(\Pi_i) \)

\(\text{fix}(\Pi_i) \):
 measure \(\Pi_i \)
 if it was “unhappy”
 resample the qubits of \(\Pi_i \)
 for all neighbours \(\Pi_j \) of \(\Pi_i \)
 \(\text{fix}(\Pi_j) \)

Our key lemma

Probability of doing a specific length-\(\ell \) resample sequence is \(\leq p^{\ell} \)
Measuring joint happiness

Perfect ground space projections of subsystems

\(F : \) set of already fixed projectors.

Define \(\Pi_F \) via \(\ker(\Pi_F) = \bigcap_{j \in F} \ker(\Pi_j) \).

(In the commuting case \(\Pi_F = \prod_{j \in F} \Pi_j \).)
Measuring joint happiness

Perfect ground space projections of subsystems

\(F \): set of already fixed projectors.
Define \(\Pi_F \) via \(\ker(\Pi_F) = \bigcap_{j \in F} \ker(\Pi_j) \).
(In the commuting case \(\Pi_F = \prod_{j \in F} \Pi_j \).)

Generalised measurement procedure \(M \) – for our key lemma

If \(\Pi_F |\psi\rangle = 0 \) (i.e. \(F \) is “happy”) and we measure it using \(M_{F,i} \), returning result

- “happy”, then

\[\Pi_{F \cup \{i\}} M_{F,i}(|\psi\rangle) = 0 \]

- “unhappy”, then

\[\Pi_i M_{F,i}(|\psi\rangle) = M_{F,i}(|\psi\rangle) \]
(while preserving “happiness” of non-neighbour projectors.)
Weak measurement

Weak measurement of Π_i

To weakly measure $\{\Pi_i, \text{Id} - \Pi_i\}$ use an ancilla and a Π_i-controlled rotation:

$$\Pi_i^\theta = \Pi_i \otimes R^\theta + (\text{Id} - \Pi_i) \otimes \text{Id}$$

where

$$R^\theta = \begin{pmatrix} \sqrt{1 - \theta} & -\sqrt{\theta} \\ \sqrt{\theta} & \sqrt{1 - \theta} \end{pmatrix}.$$

Apply Π_i^θ on $|\psi\rangle \otimes |0\rangle$ and measure the ancilla qubit (in the $|0\rangle, |1\rangle$ basis).
Weak measurement

Weak measurement of Π_i

To weakly measure $\{\Pi_i, \text{Id} - \Pi_i\}$ use an ancilla and a Π_i-controlled rotation:

$$\Pi_i^\theta = \Pi_i \otimes R^\theta + (\text{Id} - \Pi_i) \otimes \text{Id},$$

where $R^\theta = \left(\begin{array}{cc} \sqrt{1 - \theta} & -\sqrt{\theta} \\ \sqrt{\theta} & \sqrt{1 - \theta} \end{array} \right)$.

Apply Π_i^θ on $|\psi\rangle \otimes |0\rangle$ and measure the ancilla qubit (in the $|0\rangle$, $|1\rangle$ basis).

The outcomes of a weak measurement

Outcome 1: $|\psi_1^\theta\rangle = \sqrt{\theta} \Pi_i |\psi\rangle$ (unnormalised)

Outcome 0: $|\psi_0^\theta\rangle = (\text{Id} - \Pi_i) |\psi\rangle + \sqrt{1 - \theta} \Pi_i |\psi\rangle \approx |\psi\rangle - (\theta/2) \Pi_i |\psi\rangle$
Problem with strong measurement

\[\psi \rangle \]

\[\in \text{im}(\Pi_F) \]

\[\in \text{ker}(\Pi_i) \]

\[\in \text{im}(\Pi_i) \]

\[\in \text{ker}(\Pi_F) \]
Problem with strong measurement

\[\psi \in \ker(\Pi_F) \in \text{im}(\Pi_F) \]

\[\psi_0 \in \ker(\Pi_i) \in \text{im}(\Pi_i) \]

\[\psi_1 \]
Problem with strong measurement

\[\psi \in \ker(\Pi_F) \]
\[\psi \in \text{im}(\Pi_i) \]
\[\psi_0 \]
\[\psi_0 \in \ker(\Pi_i) \]
\[\psi_1 \]
\[\psi_1 \in \ker(\Pi_F) \]
\[\psi \in \text{im}(\Pi_i) \]

\[\psi_1 \]
\[\psi \]
Problem with strong measurement

\[|\psi_1\rangle - |\psi_1\rangle = -\Pi_F|\psi_1\rangle \in \ker(\Pi_F) \notin \text{im}(\Pi_F) \notin \ker(\Pi_i) \notin \text{im}(\Pi_i) \ni |\psi_0\rangle \ni |\psi_0\rangle \]
Weak measurement + quantum Zeno effect

\[\in \text{im}(\Pi_F) \]

\[\in \text{ker}(\Pi_i) \]

\[|\psi\rangle \]

\[\in \text{im}(\Pi_i) \]
Weak measurement + quantum Zeno effect

\[|\psi_0\rangle \hspace{1cm} - \sqrt{\theta} |\psi_1\rangle \hspace{1cm} |\psi\rangle \]

\[\in \text{im}(\Pi_F) \]

\[\in \ker(\Pi_i) \]

\[\in \text{im}(\Pi_i) \]
Weak measurement + quantum Zeno effect

\[|\psi_0\rangle - \sqrt{\theta} \Pi_F |\psi_1\rangle \]

\[\in \ker(\Pi_i) \]

\[\in \im(\Pi_F) \]

\[\in \im(\Pi_i) \]

\[|\psi_1\rangle - \sqrt{\theta} \Pi_F |\psi_1\rangle \]

\[\in \ker(\Pi_F) \]
Implementation of \mathcal{M}

Generalised measurement $\mathcal{M}_{F,i}$

```
repeat $T$ times do
    measure $\Pi_i$ weakly
    if $\Pi_i$ was detected then return $i$ is "unhappy"
    measure $\Pi_F$ (for quantum Zeno effect)
end repeat and return $F \cup \{i\}$ is "happy"
```
Implementation of M

Generalised measurement $M_{F,i}$

repeat T times do

measure Π_i weakly if Π_i was detected then return i is “unhappy"

measure Π_F (for quantum Zeno effect)

end repeat and return $F \cup \{i\}$ is “happy"

- If $|\psi\rangle$ was “happy" w.r.t. $F \cup \{i\}$, then M always returns $F \cup \{i\}$ is “happy"
Implementation of M

Generalised measurement $M_{F,i}$

repeat T times do
 measure Π_i weakly if Π_i was detected then return i is “unhappy"
 measure Π_F (for quantum Zeno effect)
end repeat and return $F \cup \{i\}$ is “happy"

▶ If $|\psi\rangle$ was “happy" w.r.t. $F \cup \{i\}$, then M always returns $F \cup \{i\}$ is “happy"

Let γ be the energy gap (smallest non-zero. energy) of $H_{F \cup \{i\}} = \Pi_i + \sum_{j \in F} \Pi_j$.

▶ If $|\psi\rangle$ was “unhappy" w.r.t. $F \cup \{i\}$: $T \approx \frac{1}{\theta \gamma}$ suffices to find it “unhappy"
Implementation of \mathcal{M}

Generalised measurement $\mathcal{M}_{F,i}$

\[
\begin{align*}
\text{repeat } T \text{ times do} \\
\quad \text{measure } \Pi_i \text{ weakly if } \Pi_i \text{ was detected then return } i \text{ is “unhappy”} \\
\quad \text{measure } \Pi_F \text{ (for quantum Zeno effect)} \\
\text{end repeat and return } F \cup \{i\} \text{ is “happy”}
\end{align*}
\]

- If $|\psi\rangle$ was “happy” w.r.t. $F \cup \{i\}$, then \mathcal{M} always returns $F \cup \{i\}$ is “happy”

Let γ be the energy gap (smallest non-zero energy) of $H_{F \cup \{i\}} = \Pi_i + \sum_{j \in F} \Pi_j$.

- If $|\psi\rangle$ was “unhappy” w.r.t. $F \cup \{i\}$: $T \approx \frac{1}{\theta \gamma}$ suffices to find it “unhappy”

We “know in advance” the outcome of all Π_F measurement!

$\Rightarrow \Pi_F$ can be simulated by meas. $\sim \frac{|F|}{\gamma}$ times a randomly chosen $(\Pi_j)_{j \in F}$
Runtime

The uniform gap

For $H = \sum_{i \in [m]} \Pi_i$ we define the uniform gap of H as

$$\gamma(H) := \min_{F \subseteq [m]} \text{gap} \left(\sum_{i \in F} \Pi_i \right).$$
Runtime

The uniform gap

For $H = \sum_{i \in [m]} \Pi_i$ we define the uniform gap of H as

$$\gamma(H) := \min_{F \subseteq [m]} \text{gap} \left(\sum_{i \in F} \Pi_i \right).$$

The overall runtime of the quantum algorithm using M

The total number of measurements is $\tilde{O}\left(\frac{m^3 \cdot d}{\gamma^2} \cdot \log^2 \left(\frac{1}{\delta} \right) \right)$.

- m: number of projectors
- d: maximum number of neighbours of a projector
- γ: uniform gap
- δ: maximum trace distance of the output from a density operator supported on the ground space
Discussion

Benefits of the algorithm

- The algorithm *only* uses local (weak and strong) measurements
Discussion

Benefits of the algorithm

- The algorithm **only** uses local (weak and strong) *measurements*
- Can prepare the ground state of a **50 qubit system using 51 qubits!**
Discussion

Benefits of the algorithm

- The algorithm only uses local (weak and strong) measurements
- Can prepare the ground state of a 50 qubit system using 51 qubits!
- Due to quantum Zeno effect it probably does not need error correction

Open questions

- Is there a variant which can prepare low-energy states without gap promise?
- Physically motivated examples? (quantum chemistry, spin systems, ...)
- Getting speed ups for some interesting classical problem?
- Can this result be used for showing quantum supremacy?
Without a promise on the gap

What can we do without knowing the size of the gap?

For any input \((\Pi_i)_{i \in [m]}\) satisfying the Lovász (or Shearer) condition and \(\epsilon \in \mathbb{R}_+\) we can do one of the following:

- Prepare a quantum state supported on energy eigenstates with energy below \(\epsilon\).

Or Conclude that the uniform gap is below \(\epsilon\).
Preparing low-energy quantum states

Let Π^δ_S denote the projection to the subspace of energy eigenstates with energy at least δ, with respect to $H_S = \sum_{i \in S} \Pi_i$.

Generalising the two main properties to low energy subspaces

Suppose $|\psi\rangle$ is such that $\Pi^\delta_S |\psi\rangle = 0$. We need a quantum channel $M_{S,i}$ with two possible (probabilistic) outcomes:

- "happy": $\Pi^\delta_{S \cup \{i\}} M_{S,i}(|\psi\rangle) = 0$
- "unhappy": $\left(\Pi^\delta_{S \setminus \Gamma(i)} \leq \Pi^\delta_S \otimes (\text{Id} - \Pi_i) \right) M_{S,i}(|\psi\rangle) = 0$.

Main issue

$\Pi^\delta_{S \setminus \Gamma(i)} \leq \Pi^\delta_S$ does not always hold! (Only if $\delta = 0$.)
Simulation results for the non-commuting case

- Various topologies tested up to 21 qubits, including cycles, grids, octahedron, dodecahedron
- Poor performance even for cycles? 2-SAT easy even classically!

Output of the LIQUi| simulation, on C_{10}

```
0:0000.0/Classical upper bound on the expected number of resamplings: 45.0
0:0003.0/Projectors constructed
0:0003.3/Singular values found: 1022, smallest: 0.039998
0:0003.3/Hamiltoninan constructed
0:0003.7/Kernel Gate constructed
0:0003.7/Run quantum test on a fixed random projector set
0:0017.2/Average resamplings in 100 simulation runs:
  0: M: 0 R: 0 E: 2.6074 P: 0.0010
  1: M: 22.1 R: 4.0 E: 0.4994 P: 0.0204
  2: M: 14.4 R: 1.5 E: 0.1820 P: 0.0364
  3: M: 12.2 R: 0.7 E: 0.1082 P: 0.0413
  4: M: 12.3 R: 0.8 E: 0.1177 P: 0.0516
  5: M: 11.3 R: 0.4 E: 0.0774 P: 0.0514
  10: M: 10.6 R: 0.2 E: 0.0406 P: 0.0701
  15: M: 10.7 R: 0.2 E: 0.0370 P: 0.0740
  20: M: 10.6 R: 0.2 E: 0.0264 P: 0.0716
```