Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH
Andrea W. Coladangelo
Caltech
arXiv 1609.03687

The parallel-repeated magic square game is rigid
Matthew Coudron
MIT
Anand Natarajan
MIT
arXiv 1610.03574

Overlapping qubits
Rui Chao
USC
Ben W. Reichardt
USC
Chris Sutherland
USC
Thomas Vidick
Caltech
arXiv 1701.01062
5 superconducting qubits, IBM

16 trapped ion qubits, UMD/NIST

1152 superconducting qubits, D-Wave

quantum computers are scaling up

\(n \) qubits \(\Rightarrow 2^n \) dimensions \(\Rightarrow \) exponentially hard to analyze
Quantum computers are scaling up.

n qubits $\Rightarrow 2^n$ dimensions \Rightarrow exponentially hard to analyze.

How to test quantum computers?

- **Small**
 - State/process tomography

- **Medium**
 - Error correction?
 - Small simulation?

- **Our tests!**

- **Large**
 - Factorization
Testing quantum systems

- Is it quantum?
- How many qubits?
- How much entanglement?
- How does it work?

Accept or Reject?
Goal: tests for large quantum systems that take polynomial time and/or with high probability and/or tolerate constant noise.

Testing quantum systems:
- Is it quantum?
- How many qubits?
- How much entanglement?
- How does it work?

Accept or Reject?

scalability
efficiency
completeness & soundness
robustness & rigidity
Test the dimensionality of a single quantum system
—How many qubits overlapping

Test the number of (tilted) EPR pairs between two systems
—How much entanglement

next:

• Andrea: using tilted CHSH games
• Matthew: using Magic Square games
Quantum systems are made of qubits in tensor product

n qubits $\Rightarrow 2^n \text{ dim}$
Quantum systems are made of qubits \textit{in tensor product}.

\[
\begin{array}{c}
\text{n qubits } \Rightarrow 2^n \text{ dim}
\end{array}
\]

In general qubits can \textit{overlap}.

Operations on one qubit can slightly affect the others.
Quantum systems are made of qubits in tensor product

\[n \text{ qubits } \Rightarrow 2^n \text{ dim} \]

In general qubits can overlap

operations on one qubit can slightly affect the others

\[\| [U_1, U_2] \| \leq \epsilon \]
Quantum systems are made of qubits in tensor product

\[n \text{ qubits } \Rightarrow 2^n \text{ dim} \]

In general qubits can overlap

\[\| [U_1, U_2] \| \leq \epsilon \]

operations on one qubit can slightly affect the others

\[n \epsilon\text{-overlapping qubits} \Rightarrow n^{1/\epsilon^2} \text{ dim} \]
Theorem 1:

n overlapping qubits can fit in $\text{poly}(n)$ dimensions

\[n^{1/\varepsilon^2} \] dimensions

\(\varepsilon \)-overlap

(operations on one qubit can affect any other qubit by at most \(\varepsilon \))
Theorem 1:

n overlapping qubits can fit in poly(n) dimensions

‘𝜖-overlap’

(operations on one qubit can affect any other qubit by at most 𝜖)

⇒

n^{1/𝜖^2} dimensions

Theorem 2:

Given access to n (overlapping) qubits, ∃ a test s.t.

\[\Pr[\text{pass test}] \geq 1 - \epsilon \Rightarrow \text{dimension} \geq (1 - O(n^2 \epsilon)) \ 2^n \]
Definitions:

- A qubit in \mathcal{H} is a pair of anti-commuting reflections on it.

Indeed:

\[\{X, Z\} = 0 \Rightarrow X \simeq \sigma^x \otimes 1 \]
\[Z \simeq \sigma^z \otimes 1 \]
Definitions:

- A qubit in \mathcal{H} is a pair of anti-commuting reflections on it

\[\mathcal{H} \simeq \mathbb{C}^2 \otimes \mathcal{H}' \]

Indeed:

\[\{ X, Z \} = 0 \Rightarrow X \simeq \sigma^x \otimes 1 \]
\[Z \simeq \sigma^z \otimes 1 \]

- The overlap ε of 2 qubits $(X_1, Z_1), (X_2, Z_2)$ in \mathcal{H} is given by

\[\max_{P, Q \in \{ X, Z \}} \| [P_1, Q_2] \| \]
Definitions:

- **A qubit in** \(\mathcal{H} \) **is a pair of anti-commuting reflections on it**

\[\mathcal{H} \simeq \mathbb{C}^2 \otimes \mathcal{H}' \]

Indeed:

\[\{ X, Z \} = 0 \Rightarrow X \simeq \sigma^x \otimes 1 \]
\[Z \simeq \sigma^z \otimes 1 \]

- **The overlap** \(\varepsilon \) **of 2 qubits** \((X_1,Z_1),(X_2,Z_2)\) **in** \(\mathcal{H} \) **is given by**

\[\max_{P,Q \in \{X,Z\}} \| [P_1, Q_2] \| \]

\(\varepsilon = 0 \Leftrightarrow \) qubits in tensor product:

\[X_1 \simeq \sigma^x \otimes I \otimes 1 \quad X_2 \simeq I \otimes \sigma^x \otimes 1 \]
\[Z_1 \simeq \sigma^z \otimes I \otimes 1 \quad Z_2 \simeq I \otimes \sigma^z \otimes 1 \]
Theorem 1:

$n \varepsilon$-overlapping qubits can fit in $n^{\Omega(1/\varepsilon^2)}$-dimensional Hilbert space.

Proof idea:

nearly orthogonal vectors

3n points in $\mathbb{R}^{O(\log n/\varepsilon^2)}$
Theorem 1:

$n \varepsilon$-overlapping qubits can fit in $n^{\Omega(1/\varepsilon^2)}$-dimensional Hilbert space.

Proof idea:

- nearly orthogonal vectors
 - \downarrow *group in threes*
- nearly orthogonal subspaces
Theorem 1:

$n \varepsilon$-overlapping qubits can fit in $n^{\Omega(1/\varepsilon^2)}$-dimensional Hilbert space.

Proof idea:

- nearly orthogonal vectors
 - group in threes
- nearly orthogonal subspaces
 - Clifford algebra rep.
- nearly commuting qubits

\[X = i E F \quad Z = i E G \]

$(n^{\Omega(1/\varepsilon^2)}$-dim ref.)
Theorem 1:

\(n \varepsilon \)-overlapping qubits can fit in \(n^{\Omega(1/\varepsilon^2)} \)-dimensional Hilbert space.

Proof idea:

- nearly orthogonal vectors
 - \(\downarrow \) group in threes
- nearly orthogonal subspaces
 - \(\downarrow \) Clifford algebra rep.
- nearly commuting qubits

Note: meaningful only if \(\varepsilon = \Omega(\sqrt{\log n/n}) \)
Dimension test: Given access to n qubits

1. Sequentially store n random qubits (\(|0\rangle, |1\rangle, |+\rangle, \text{or} |-\rangle\))
2. Retrieve a random index & check it’s correct

\[
\text{I} \quad \text{j} \quad \text{n}
\]
Dimension test: Given access to n qubits

1. Sequentially store n random qubits (|0⟩, |1⟩, |+⟩, or |-⟩)
2. Retrieve a random index & check it’s correct

![Diagram showing overlapping circles indicating dimension test]

Theorem 2:

\[\Pr[\text{pass test}] \geq 1 - \varepsilon \Rightarrow \text{dimension} \geq (1 - O(n^2\varepsilon)) \ 2^n \]

Note: meaningful only if \(\varepsilon = O(1/n^2) \)
Summary

- **Qubit**: anti-commuting reflection pair
- **Overlapping qubits**: nearly commuting reflections

- **Qubit packing**:
 \[n \text{ overlapping qubits can fit in } \text{poly}(n) \text{ dimensions} \]
- **Qubit separation**:
 \[\Pr[\text{pass test}] \geq 1 - \varepsilon \Rightarrow \text{dimension} \geq (1 - O(n^2 \varepsilon)) 2^n \]
Summary

- **Qubit**: anti-commuting reflection pair
- **Overlapping qubits**: nearly commuting reflections

- **Qubit packing**:
n n overlapping qubits can fit in poly(n) dimensions
- **Qubit separation**:
 \[\Pr[\text{pass test}] \geq 1 - \varepsilon \Rightarrow \text{dimension} \geq (1 - O(n^2\varepsilon)) 2^n \]

Applications and open questions:

- Test functionality
- Loosen assumptions & run experiments
- **Self-testing of EPR states**
Summary

- **Qubit**: anti-commuting reflection pair
- **Overlapping qubits**: nearly commuting reflections

- **Qubit packing:**
 \(n \) overlapping qubits can fit in \(\text{poly}(n) \) dimensions

- **Qubit separation:**
 \[\Pr[\text{pass test}] \geq 1 - \varepsilon \Rightarrow \text{dimension} \geq (1 - O(n^2\varepsilon)) \cdot 2^n \]

Applications and open questions:

- Test functionality
- Loosen assumptions & run experiments
- **Self-testing of EPR states**

Thank you!