Tsirelson’s problem and linear system games

William Slofstra

IQC, University of Waterloo

January 20th, 2017

includes joint work with Richard Cleve and Li Liu
A speculative question

Conventional wisdom: Finite time / volume / energy / etc. → can always describe nature by finite-dimensional Hilbert spaces

Could nature be “intrinsically” infinite-dimensional?

Answer: Probably not

But if it was... could we recognize that fact in an experiment? (For instance, in a Bell-type experiment?)

Tsirelson’s problem and linear system games
A speculative question

Conventional wisdom: Finite time / volume / energy / etc. can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be “intrinsically” infinite-dimensional?
A speculative question

Conventional wisdom: Finite time / volume / energy / etc. = can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be “intrinsically” infinite-dimensional?

Answer: Probably not
A speculative question

Conventional wisdom: Finite time / volume / energy / etc. can always describe nature by finite-dimensional Hilbert spaces

But... many models in quantum mechanics and quantum field theory require infinite-dimensional Hilbert spaces (e.g. CCR)

Could nature be “intrinsically” infinite-dimensional?

Answer: Probably not

But if it was... could we recognize that fact in an experiment?

(For instance, in a Bell-type experiment?)
Non-local games (aka Bell-type experiments)

Win/lose based on outputs a, b and inputs x, y

Alice and Bob must cooperate to win

Winning conditions known in advance

Complication: players cannot communicate while the game is in progress
Suppose game is played many times, with inputs drawn from some public distribution π

To outside observer, Alice and Bob’s strategy is described by:

$$P(a, b| x, y) = \text{the probability of output } (a, b) \text{ on input } (x, y)$$

Correlation matrix: collection of numbers $\{P(a, b| x, y)\}$
What can $P(a, b|x, y)$ be?

$P(a, b|x, y) = \text{the probability of output } (a, b) \text{ on input } (x, y)$

n questions, m answers: $\{P(a, b|x, y)\} \subset \mathbb{R}^{m^2 n^2}$

Classically

$P(a, b|x, y) = p_a^x \cdot q_b^y$

Probability that Alice outputs a on input x

Same for Bob

Tselelson’s problem and linear system games
What can $P(a, b|x, y)$ be?

$P(a, b|x, y) = \text{the probability of output } (a, b) \text{ on input } (x, y)$

$n \text{ questions, } m \text{ answers: } \{P(a, b|x, y)\} \subset \mathbb{R}^{m^2n^2}$

Classically

$$P(a, b|x, y) = \sum_i \lambda_i \cdot p_a^{x_i} \cdot q_b^{y_i}$$

- Shared randomness
- Probability that Alice outputs a on input x
- Same for Bob

Tseilson’s problem and linear system games

William Slofstra
What can $P(a, b|x, y)$ be?

- $P(a, b|x, y) =$ the probability of output (a, b) on input (x, y)
- n questions, m answers: $\{P(a, b|x, y)\} \subset \mathbb{R}^{m^2n^2}$

Quantum

\[
P(a, b|x, y) = \bra{\psi} M_a^x \otimes N_b^y |\psi\rangle
\]

- Alice’s measurement on input x
- Bob’s measurement on input y
- shared state on $H_1 \otimes H_2$
What can $P(a, b|x, y)$ be?

$P(a, b|x, y) =$ the probability of output (a, b) on input (x, y)

n questions, m answers: $\{P(a, b|x, y)\} \subset \mathbb{R}^{m^2n^2}$

Quantum

$P(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle$

Why? axiom of quantum mechanics for composite systems
Bell inequalities

$C_c(m, n) = $ set of classical correlation matrices

$C_q(m, n) = $ set of quantum correlation matrices

Both are convex subsets of $\mathbb{R}^{m^2n^2}$.

(all diagrams are schematic)
Bell inequalities ct’d

\[\omega(G, P) = \omega^q(G) \]

\[\omega(G, P) = \omega^c(G) \]

\(\omega(G, P) \) = probability of winning game \(G \) with correlation \(P \)

\(\omega^c(G) \) = maximum winning probability for \(P \in C_c(m, n) \)

\(\omega^q(G) \) = same thing but with \(C_q(m, n) \)
Bell inequalities ct’d

If $\omega^c(G) < \omega^q(G)$, then

1. $C_c \subsetneq C_q$, and
2. we can (theoretically) show this in an experiment
If $\omega^c(G) < \omega^q(G)$, then

(1) $C_c \subsetneq C_q$, and

(2) we can (theoretically) show this in an experiment.

Bell’s theorem + many experiments: this happens!
Finite versus infinite-dimensional

Quantum correlations:

\[P(a, b|x, y) = \langle \psi | M^x_a \otimes N^y_b | \psi \rangle \]

where \(|\psi\rangle \in H_1 \otimes H_2 \)
Finite versus infinite-dimensional

Quantum correlations:

\[P(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle \]

where \(|\psi\rangle \in H_1 \otimes H_2 \)

Correlation set \(C_q \):

\(H_1, H_2 \) must be finite-dimensional

(but, no bound on dimension)
Finite versus infinite-dimensional

Quantum correlations:

\[P(a, b|x, y) = \langle \psi | M_a^x \otimes N_b^y | \psi \rangle \]

where \(|\psi\rangle \in H_1 \otimes H_2 \)

Correlation set \(C_q \):

\(H_1, H_2 \) must be finite-dimensional

(but, no bound on dimension)

Correlation set \(C_{qs} \):

\(H_1, H_2 \) allowed to be infinite-dimensional

(the ‘s’ stands for ‘spatial tensor product’)

Tsirelson’s problem and linear system games
Finite versus infinite-dimensional ct’d

Can we separate C_q from C_{qs} with a Bell inequality?

No! This is the wrong picture.
Finite versus infinite-dimensional ct’d

Can we separate C_q from C_{qs} with a Bell inequality?

NO!

This is the wrong picture
How is this picture wrong?

C_q and C_{qs} are not known to be closed.
How is this picture wrong?

C_q and C_{qs} are not known to be closed.

Even worse: $\overline{C_{qs}} = \overline{C_q}$
How is this picture wrong?

C_q and C_{qs} are not known to be closed.

Even worse: $\overline{C_{qs}} = \overline{C_q}$

New correlation set $C_{qa} := \overline{C_q}$

contains limits of finite-dimensional correlations indistinguishable from C_q and C_{qs} in experiment
The real picture

Could look like:

We know $C_q \subseteq C_{qs} \subseteq C_{qa} \ldots$ but nothing else!
The real picture

Could look like:

\[
\begin{array}{c}
\vdots \quad \text{in } C_q \\
\text{dotted} \quad \text{in } C_{qs} \text{ but not } C_q \\
\text{dashed} \quad \text{in } C_{qa} \text{ but not } C_{qs}
\end{array}
\]

We know \(C_q \subseteq C_{qs} \subseteq C_{qa} \ldots \) but nothing else!

Fortunately, this is not the end of the story

We’ve assumed that \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \ldots \) maybe this is too restrictive
Commuting-operator model

Another model of composite systems

Correlation set C_{qc}:

$$P(a, b|x, y) = \langle \psi | M_a^x \cdot N_b^y | \psi \rangle$$

where

(1) $|\psi\rangle$ belongs to a joint Hilbert space H
 (possibly infinite-dimensional)

(2) Measurements commute: $M_a^x N_b^y = N_b^y M_a^x$ for all x, y, a, b

‘qc’ stands for ‘quantum-commuting’
What do we know about C_{qc}

Correlation set C_{qc}:

$$P(a, b|x, y) = \langle \psi | M_a^x \cdot N_b^y | \psi \rangle$$

C_{qc} is closed!

Get a hierarchy $C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc}$ of convex sets
What do we know about C_{qc}

Correlation set C_{qc}: $P(a, b|x, y) = \langle \psi | M^x_a \cdot N^y_b | \psi \rangle$

C_{qc} is closed!

Get a hierarchy $C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc}$ of convex sets

If H is finite-dimensional, then \{ $P(a, b|x, y)$ \} $\in C_q$

Can find H_1, H_2 such that $H = H_1 \otimes H_2$,

$M^x_a \cong \tilde{M}^x_a \otimes I$ and $N^y_b \cong I \otimes \tilde{N}^y_b$ for all x, y, a, b

This argument doesn’t work if H is infinite-dimensional
Tsirelson’s problem(s)

Tsirelson problems: is C_t, $t \in \{q, qs, qa\}$ equal to C_{qc}

- $C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc}$
 - strong tensor product
 - weak commuting operator

Comparing two axiom systems:
1. Strong Tsirelson: is $C_q = C_{qc}$?
2. Is $\diamondsuit_q(G) < \diamondsuit_{qc}(G)$ for any game? Equivalent to weak Tsirelson: is $C_{qa} = C_{qc}$?
Tsirelson’s problem(s)

\[C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc} \]

- **strong**
- **tensor product**
- **weak**
- **commuting operator**

Tsirelson problems: is \(C_t, t \in \{q, qs, qa\} \) equal to \(C_{qc} \)

These are fundamental questions

1. Comparing two axiom systems:
 - Strong Tsirelson: is \(C_q = C_{qc} \)?
Tsirelson’s problem(s)

Tsirelson problems: is C_t, $t \in \{q, qs, qa\}$ equal to C_{qc}

These are fundamental questions

1. Comparing two axiom systems:
 - Strong Tsirelson: is $C_q = C_{qc}$?
2. Is $\omega^q(G) < \omega^{qc}(G)$ for any game?
 - Equivalent to weak Tsirelson: is $C_{qa} = C_{qc}$?
What do we know?

Theorem (Ozawa, JNPPSW, Fr)

\[C_{qa} = C_{qc} \text{ if and only if Connes’ embedding problem is true} \]
What do we know?

\[C_q \subseteq C_{qs} \subseteq C_{qa} \subseteq C_{qc} \]

Theorem (Ozawa, JNPPSW, Fr)

\[C_{qa} = C_{qc} \text{ if and only if Connes’ embedding problem is true} \]

Theorem (S)

\[C_{qs} \neq C_{qc} \]
Other fundamental questions

1 Resource question:

A non-local game G is a computational task
Bell’s theorem: can do better with entanglement
Can G be played optimally with finite Hilbert space dimension?

Yes $\iff C_q = C_q^a$ (in other words, is C_q closed?)

Variants of games: finite dimensions do not suffice
[LTW13],[MV14],[RV15]
Other fundamental questions

1. Resource question:
 A non-local game G is a computational task
 Bell’s theorem: can do better with entanglement
 Can G be played optimally with finite Hilbert space dimension?
 Yes $\iff C_q = C_{qa}$ (in other words, is C_q closed?)
 Variants of games: finite dimensions do not suffice
 [LTW13],[MV14],[RV15]

2. Can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?
 (what is the power of MIP^*?)
What do we know?

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $HA = HB = CN$, converges to ω^q (from below)

Navascu´es, Pironio, Ac ´ın: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

In both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$

General cases of other questions completely open!
What do we know?

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above).
What do we know?

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

In both cases, no way to tell how close we are to the correct answer
What do we know?

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

In both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$
What do we know?

Question: can we compute $\omega^q(G)$ or $\omega^{qc}(G)$?

Brute force search through strategies on $\mathcal{H}_A = \mathcal{H}_B = \mathbb{C}^n$, converges to ω^q (from below)

Navascués, Pironio, Acín: Given a non-local game, there is a hierarchy of SDPs which converge in value to ω^{qc} (from above)

In both cases, no way to tell how close we are to the correct answer

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1

General cases of other questions completely open!
Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$
Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1$.

NPA hierarchy: there is no computable function

$$L : \text{Games} \rightarrow \mathbb{N}$$

such that $\omega^{qc}(G) = L(G)$th level of NPA hierarchy.
Undecidability

Theorem (S)

It is undecidable to tell if $\omega^{qc} < 1

NPA hierarchy: there is no computable function

$$L : \text{Games} \to \mathbb{N}$$

such that $\omega^{qc}(G) = L(G)$th level of NPA hierarchy

We still don’t know: can we compute $\omega^{qc}(G)$ to within some given error?

(Ji ’16: this problem is MIP^*-complete)

If weak Tsirelson is true, then ω^{qc} is computable in this stronger sense
Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is < 1 (very inefficient algorithm)
Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is < 1 (very inefficient algorithm)

More generally: first-order logic for field of real numbers is decidable

Contrast: first-order logic for integers and rationals is undecidable

Consequence of undecidability of ϕ_C due to Tobias Fritz:

Quantum logic (first order theory for projections on Hilbert spaces) is undecidable
Undecidability comes from exact error?

Comparison point: Can decide if optimal value of finite SDP is < 1 (very inefficient algorithm)

More generally: first-order logic for field of real numbers is decidable

Contrast: first-order logic for integers and rationals is undecidable

Consequence of undecidability of $\omega^{qc} < 1$ due to Tobias Fritz:

quantum logic (first order theory for projections on Hilbert spaces) is undecidable
Quantum logic is undecidable

Theorem (Tobias Fritz)

The following problem is undecidable: Given \(n \geq 1 \) and a collection of subsets \(C \) of \(\{1, \ldots, n\} \), determine if there are self-adjoint projections \(P_1, \ldots, P_n \) such that

\[
\sum_{i \in S} P_i = I, \quad P_i P_j = P_j P_i = 0 \text{ if } i \neq j \in S
\]

for all \(S \in C \).

Proof: follows from undecidability of \(\omega^{qc} < 1 \)

Builds on Acín-Fritz-Leverrier-Sainz '15.
Two theorems

<table>
<thead>
<tr>
<th>Theorem (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{qs} \neq C_{qc}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is undecidable to tell if $\omega_{qc} < 1$</td>
</tr>
</tbody>
</table>

Theorems look very different...
Two theorems

Theorem (S)

\[C_{qs} \neq C_{qc} \]

Theorem (S)

It is undecidable to tell if \(\omega_{qc} < 1 \)

Theorems look very different...

But: proof follows from a single theorem in group theory

Connection with group theory comes from linear system games
Linear system games

Start with \(m \times n \) linear system \(Ax = b \) over \(\mathbb{Z}_2 \)

Inputs:
- Alice receives 1 equation
- Bob receives 1 variable

Outputs:
- Alice outputs an assignment \(a_k \) for all variables \(x_k \) with \(A_{ik} \neq 0 \)
- Bob outputs an assignment \(b_j \) for \(x_j \)

They win if:
- \(A_{ij} = 0 \) (assignment irrelevant) or
- \(A_{ij} \neq 0 \) and \(a_j = b_j \) (assignment consistent)

Such games go back to Mermin-Peres magic square, more recently studied by Cleve-Mittal, Ji, Arkhipov.
Linear system games

Start with $m \times n$ linear system $Ax = b$ over \mathbb{Z}_2

Inputs:
- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:
- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:
- $A_{ij} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_j = b_j$ (assignment consistent)
Linear system games

Start with $m \times n$ linear system $Ax = b$ over \mathbb{Z}_2

Inputs:
- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:
- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:
- $A_{ij} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_j = b_j$ (assignment consistent)
Linear system games

Start with $m \times n$ linear system $Ax = b$ over \mathbb{Z}_2

Inputs:
- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:
- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:
- $A_{ij} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_j = b_j$ (assignment consistent)
Linear system games

Start with $m \times n$ linear system $Ax = b$ over \mathbb{Z}_2

Inputs:
- Alice receives $1 \leq i \leq m$ (an equation)
- Bob receives $1 \leq j \leq n$ (a variable)

Outputs:
- Alice outputs an assignment a_k for all variables x_k with $A_{ik} \neq 0$
- Bob outputs an assignment b_j for x_j

They win if:
- $A_{ij} = 0$ (assignment irrelevant) or
- $A_{ij} \neq 0$ and $a_j = b_j$ (assignment consistent)

Such games go back to Mermin-Peres magic square, more recently studied by Cleve-Mittal, Ji, Arkhipov
Quantum solutions of $Ax = b$

Observables X_j such that

1. $X_j^2 = I$ for all j
2. $\prod_{j=1}^{n} X_j^{A_{ij}} = (-I)^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $X_j X_k = X_k X_j$

(We’ve written linear equations multiplicatively)
Quantum solutions of $Ax = b$

Observables X_j such that

1. $X_j^2 = I$ for all j
2. $\prod_{j=1}^n X_j^{A_{ij}} = (-I)^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $X_j X_k = X_k X_j$

(We’ve written linear equations multiplicatively)

Theorem (Cleve-Mittal, Cleve-Liu-S)

Let G be the game for linear system $Ax = b$. Then:

- G has a perfect strategy in C_{qs} if and only if $Ax = b$ has a finite-dimensional quantum solution
- G has a perfect strategy in C_{qc} if and only if $Ax = b$ has a quantum solution
The solution group Γ of $Ax = b$ is the group generated by X_1, \ldots, X_n, J such that

1. $X_j^2 = [X_j, J] = J^2 = e$ for all j
2. $\prod_{j=1}^n X_j^{A_{ij}} = J^{b_i}$ for all i
3. If $A_{ij}, A_{ik} \neq 0$, then $[X_j, X_k] = e$

where $[a, b] = aba^{-1}b^{-1}$, $e =$ group identity

Theorem (Cleve-Mittal,Cleve-Liu-S)

Let G be the game for linear system $Ax = b$. Then:

- G has a perfect strategy in C_{qs} if and only if Γ has a finite-dimensional representation with $J \neq I$
- G has a perfect strategy in C_{qc} if and only if $J \neq e$ in Γ
Groups and local compatibility

Suppose we can write down any group relations we want…

But: generators in the relation will be forced to commute!
Groups and local compatibility

Suppose we can write down any group relations we want...

But: generators in the relation will be forced to commute!

Call this condition \textit{local compatibility}

Local compatibility is (a priori) a very strong constraint
Groups and local compatibility

Suppose we can write down any group relations we want...

But: generators in the relation will be forced to commute!

Call this condition *local compatibility*

Local compatibility is (a priori) a very strong constraint

For instance, S_3 is generated by a, b subject to the relations

$$a^2 = b^2 = e, \ (ab)^3 = e$$

If $ab = ba$, then $(ab)^3 = a^3 b^3 = ab$

So relations imply $a = b$, and S_3 becomes \mathbb{Z}_2
Group embedding theorem

Solution groups satisfy local compatibility

Nonetheless:

Solution groups are as complicated as general groups

Theorem (S)

Let G be any finitely-presented group, and suppose we are given J_0 in the center of G such that $J_0^2 = e$.

Then there is an injective homomorphism $\phi : G \hookrightarrow \Gamma$, where Γ is the solution group of a linear system $Ax = b$, with $\phi(J_0) = J$.

Tsirelson’s problem and linear system games
How do we prove the embedding theorem?

Linear system $Ax = b$ over \mathbb{Z}_2 equivalent to labelled hypergraph:

Edges are variables

Vertices are equations

v is adjacent to e if and only if $A_{ve} \neq 0$

v is labelled by $b_i \in \mathbb{Z}_2$
How do we prove the embedding theorem?

Linear system $Ax = b$ over \mathbb{Z}_2 equivalent to labelled hypergraph:

Edges are variables

Vertices are equations

v is adjacent to e if and only if $A_{ve} \neq 0$

v is labelled by $b \in \mathbb{Z}_2$

Given finitely-presented group G, we get Γ from a linear system

But what linear system?

Can answer this pictorially by writing down a hypergraph?
The hypergraph by example

\[\langle x, y, z, u, v : xyxz = xuvu = e = x^2 = y^2 = \cdots = v^2 \rangle \]
Further directions

1. Further refinements to address C_q vs C_{qa}

2. Is $\omega^q(G) < 1$ decidable?
Further directions

1. Further refinements to address C_q vs C_{qa}

2. Is $\omega^q(G) < 1$ decidable?

3. Embedding theorem: for any f.p. group G, get a non-local game such that Alice and Bob are forced to use G to play perfectly

(Caveat: but might need to use infinite-dimensional commuting-operator strategy to achieve this)

Applications to self-testing / device independent protocols?
Thank-you!
Extra slide: Higman’s group

\[G = \langle a, b, c, d : aba^{-1} = b^2, bcb^{-1} = c^2, cdc^{-1} = d^2, dad^{-1} = a^2 \rangle \]

Only finite-dimensional representation is the trivial representation.

On the other hand, \(a, b, c, d \) are all non-trivial in \(G \).