Symmetry protected topological order at nonzero temperature

Sam Roberts1, Beni Yoshida2,
Aleksander Kubica3, Stephen Bartlett1

1University of Sydney, 2Perimeter institute, 3Caltech

arXiv:1611.05450
Motivation: phases of matter

- Want robust computational structures

Topological phases are fascinating and useful for quantum computation. The 2D Ising ferromagnet, a self-correcting classical memory, and Kitaev's toric code, a quantum error correcting code at $T=0$, are examples of such models. Finding models with topological order at $T > 0$ is an important problem.
Motivation: phases of matter

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
Motivation: phases of matter

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \Longrightarrow robust computational structures
Motivation: phases of matter

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \implies robust computational structures
 - The 2D Ising ferromagnet, a self correcting classical memory

010...
Motivation: phases of matter

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \implies robust computational structures
 - The 2D Ising ferromagnet, a self correcting classical memory
 - Kitaev’s toric code, a quantum error correcting code at $T = 0$
Motivation: phases of matter

- Want robust computational structures
- Topological phases are fascinating + useful for quantum computation
- Order in many body spin systems \Rightarrow robust computational structures
 - The 2D Ising ferromagnet, a self correcting classical memory

- Kitaev’s toric code, a quantum error correcting code at $T = 0$

- Finding models with topological order at $T > 0$ is an important problem
The question

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries ...
The question

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries ...

... are they stable at nonzero temperature?
The question

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries are they stable at nonzero temperature?

Plan for the talk
The question

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries ...
... are they stable at nonzero temperature?

Plan for the talk

1. Introduction: what are (symmetry protected) topological phases?
The question

Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries ...
... are they stable at nonzero temperature?

Plan for the talk

1. Introduction: what are (symmetry protected) topological phases?
2. First result: thermal instability of a class of SPT models
Symmetry protected topological (SPT) order: certain systems that possess subtle order in the presence of symmetries ...
... are they stable at nonzero temperature?

Plan for the talk

1. Introduction: what are (symmetry protected) topological phases?
2. First result: thermal instability of a class of SPT models
3. Second result: existence of thermal SPT order
What are topological phases of matter?

- Gapped Hamiltonian $H = \sum_i h_i$ with (geometrically) local terms

- Defining property: Ground space properties are robust to any small local perturbations
 1. Ground space is a quantum code! e.g. toric code, color code
 2. Information is encoded in nonlocal degrees of freedom
 3. Robust to local errors
 4. Often ground space degeneracy depends on boundary conditions (e.g. genus of surface)
What are topological phases of matter?

- Gapped Hamiltonian $H = \sum_i h_i$ with (geometrically) local terms

- **Defining property:** Ground space properties are robust to any small local perturbations
What are topological phases of matter?

- Gapped Hamiltonian $H = \sum_i h_i$ with (geometrically) local terms

- **Defining property:** Ground space properties are robust to any small local perturbations
 1. Ground space is a quantum code! e.g. toric code, color code
What are topological phases of matter?

- Gapped Hamiltonian $H = \sum_i h_i$ with (geometrically) local terms

- Defining property: Ground space properties are robust to any small local perturbations
 1. Ground space is a quantum code! e.g. toric code, color code
 2. Information is encoded in nonlocal degrees of freedom
What are topological phases of matter?

- Gapped Hamiltonian $H = \sum_i h_i$ with (geometrically) local terms

- **Defining property**: Ground space properties are robust to any small local perturbations
 1. Ground space is a quantum code! e.g. toric code, color code
 2. Information is encoded in nonlocal degrees of freedom
 3. Robust to local errors
What are topological phases of matter?

- Gapped Hamiltonian $H = \sum_i h_i$ with (geometrically) local terms

- **Defining property:** Ground space properties are robust to any small local perturbations
 1. Ground space is a quantum code! e.g. toric code, color code
 2. Information is encoded in nonlocal degrees of freedom
 3. Robust to local errors
 4. Often ground space degeneracy depends on boundary conditions (e.g. genus of surface)
Ground states of topologically ordered systems

Def: $|\psi_1\rangle \sim |\psi_2\rangle$ (belong to same phase) iff they are related by a constant depth unitary circuit
Ground states of topologically ordered systems

Def: $|\psi_1\rangle \sim |\psi_2\rangle$ (belong to same phase) iff they are related by a constant depth unitary circuit

- Trivial phase = equivalence class of a product state
Ground states of topologically ordered systems

Def: $|\psi_1\rangle \sim |\psi_2\rangle$ (belong to same phase) iff they are related by a constant depth unitary circuit

- Trivial phase = equivalence class of a product state
- Topologically ordered \implies not equivalent to a product state.
Symmetry protected topological order: states

- Physical systems often have symmetries (e.g. invariance under spin flip $S = \otimes_{\nu} X_{\nu}$) that give rise to richer physics
Symmetry protected topological order: states

- Physical systems often have symmetries (e.g. invariance under spin flip $S = \otimes_v X_v$) that give rise to richer physics
Symmetry protected topological order: states

- Physical systems often have symmetries (e.g. invariance under spin flip $S = \otimes_{\nu} X_{\nu}$) that give rise to richer physics.
Symmetry protected topological order: states

- Physical systems often have symmetries (e.g. invariance under spin flip $S = \otimes_v X_v$) that give rise to richer physics.
Example: SPT order in 1D

- Easiest example: 1D cluster state global \textit{onsite} symmetry.

\[H = - \sum_{j} Z_{j-1} X_{j} Z_{j+1} \]
Example: SPT order in 1D

- Easiest example: 1D cluster state global *onsite* symmetry.

\[H = - \sum_j Z_{j-1} X_j Z_{j+1} \]
Example: SPT order in 1D

- Easiest example: 1D cluster state global *onsite* symmetry.

\[H = - \sum_j Z_{j-1} X_j Z_{j+1} \]

\[S_1 = X X X \]

\[S_2 = X X X \]

- Has a symmetry

\[[S_1, H] = [S_2, H] = 0 \]
Example: SPT order in 1D

- Easiest example: 1D cluster state global *onsite* symmetry.

\[
H = - \sum_j Z_{j-1} X_j Z_{j+1}
\]

\[
S_1 = X \quad X \quad X \quad X
\]

\[
S_2 = X \quad X \quad X \quad X
\]

- Has a symmetry
 \([S_1, H] = [S_2, H] = 0\)

- No constant depth *symmetric* circuit can prepare the cluster state from a product state
Example: SPT order in 1D

- Easiest example: 1D cluster state global *onsite* symmetry.

\[H = -\sum_j Z_{j-1} X_j Z_{j+1} \]

\[S_1 = X \quad X \quad X \quad X \]

\[S_2 = X \quad X \quad X \quad X \]

- Has a symmetry

\[[S_1, H] = [S_2, H] = 0 \]

- No constant depth *symmetric* circuit can prepare the cluster state from a product state

Def \(|\psi\rangle \) is SPT ordered if no *symmetric* constant depth circuit can map it to a product state, *unless* the symmetry is broken.
Generalized SPT models in d-dimensions

- A broad class of SPT models in d dimensions are the so-called group cohomology models of Chen-Gu-Liu-Wen 13

\[H = \sum_v h_v, \quad [h_v, h_w] = 0 \]

- Has a global symmetry that acts \textit{onsite}

\[S(g) = \prod_{\text{sites}} u(g), \quad [S(g), H] = 0, \quad g \in G \]
Applications of SPT order

Codes:
- Gapped boundaries

SPT states

Codes:
- Fault tolerant gate

Measurement-based quantum computation

Fault tolerant gate

Gapped boundaries
Applications of SPT order

SPT states

Codes:
- Gapped boundaries

Codes:
- Fault tolerant gate

Measurement-based quantum computation

- 2D toric code
- 1D cluster
- No symmetry
- Symmetry
- $T = 0$
- $T > 0$

Question: What about all of these at nonzero temperature?
Applications of SPT order

SPT states

Codes: Gapped boundaries

Codes: Fault tolerant gate

Measurement-based quantum computation

Question: What about all of these at nonzero temperature?

<table>
<thead>
<tr>
<th>No sym</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 0$</td>
<td>$2D$ toric code</td>
</tr>
<tr>
<td>$T > 0$</td>
<td>$4D$ toric code</td>
</tr>
</tbody>
</table>
The problem

- Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?

Our results
1. We rule out thermal stability of a large class of SPT models.
2. Prove thermal SPT ordering of the 3D cluster model

Computational aspects of this ordering
The problem

- Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?

Our results
1. We rule out thermal stability of a large class of SPT models.
2. Prove thermal SPT ordering of the 3D cluster model

\[\text{computational aspects of this ordering} \]

\[\Rightarrow \text{Thermal resources for MBQC, stable domain walls at } T \geq 0, \ldots \]
The problem

- Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?

\[T \geq 0, \ldots \]

\[\text{ordered} \]

Thermal resources for MBQC, stable domain walls at \(T \geq 0, \ldots \)
The problem

- Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?

Our results

1. We rule out thermal stability of a large class of SPT models.
The problem

- Do any of the ground state properties of an SPT ordered system survive at nonzero temperature?

![Diagram](image)

→ Thermal resources for MBQC, stable domain walls at $T \geq 0$, ...

Our results

1. We rule out thermal stability of a large class of SPT models.
2. Prove thermal SPT ordering of the 3D cluster model
 - Computational aspects of this ordering
Defining SPT order at \(T > 0 \)

- Let \(H \) be a Hamiltonian with some symmetry \(S \)
Defining SPT order at $T > 0$

- Let H be a Hamiltonian with some symmetry S
- We consider the Gibbs ensemble of H at $\beta = T^{-1}$

$$\rho(\beta) = \frac{e^{-\beta H}}{\text{Tr} e^{-\beta H}}$$
Defining SPT order at $T>0$

- Let H be a Hamiltonian with some symmetry S
- We consider the Gibbs ensemble of H at $\beta = T^{-1}$

$$\rho(\beta) = \frac{e^{-\beta H}}{\text{Tr} e^{-\beta H}}$$

- Product state \rightarrow classical ensemble e.g. of $H_{\text{cl}} = -\sum_{v} X_{v}$
Defining SPT order at $T > 0$

- Let H be a Hamiltonian with some symmetry S
- We consider the Gibbs ensemble of H at $\beta = T^{-1}$
 \[
 \rho(\beta) = \frac{e^{-\beta H}}{\text{Tr} \ e^{-\beta H}}
 \]
- Product state \to classical ensemble e.g. of $H_{cl} = -\sum_v X_v$

Def We say ρ is (r, ϵ) SPT-trivial if
 \[
 \|\rho - \text{Tr}_{\mathcal{H'}} (U \rho_{cl} U^\dagger)\|_1 < \epsilon,
 \]
 - ρ_{cl} is the Gibbs state of a classical Hamiltonian on an enlarged space
 - U is a symmetric circuit of depth r
 - \mathcal{H}' is the ancillary space
First result: instability of global onsite models

Result 1: Theorem: For any $T>0$, SPT models protected by global \textit{onsite} symmetries are not thermally robust, i.e., they are (r, ϵ) SPT-trivial for

- $r = \mathcal{O} \left(\log \frac{d+1}{d} (L) \right)$
- $\epsilon = \text{poly}^{-1}(L)$

where L is linear size of a d dimensional lattice.
First result: instability of global onsite models

Result 1: Theorem: For any \(T>0 \), SPT models protected by global onsite symmetries are not thermally robust, i.e., they are \((r, \epsilon)\) SPT-trivial for

- \(r = \mathcal{O}(\log \frac{d+1}{d}(L)) \)
- \(\epsilon = \text{poly}^{-1}(L) \)

where \(L \) is linear size of a \(d \) dimensional lattice.

\[H = \sum_v h_v, \quad [h_v, h_w] = 0 \]
First result: Thermal triviality

- First technical tool - approximation by ‘imperfect Hamiltonian’
 Hastings 11, Siva-Yoshida 16
First result: Thermal triviality

- First technical tool - approximation by ‘imperfect Hamiltonian’
 Hastings 11, Siva-Yoshida 16

Hamiltonian
\[H = \sum_v h_v \]

Remove terms with probability \(p_\beta \)

\[p_\beta = \frac{2}{1+e^{2\beta}} \]

- Ground space of \(H(p_\beta) \) approximates the Gibbs state of \(H \) up to \(\text{poly}^{-1}(L) \) error
First result: Thermal triviality

- Second technical tool: local disentangler

Can construct a symmetric disentangler near each missing term, e.g. for qubits $D_v^h v \sim X_v$...

...and continue: $D_v^h v_1 \sim X_{v_1}$

High probability of a missing term in each log $p_{L^{q\hat{q}}} \log_{\frac{1}{2}} p_{L^{q}}$ region $O_p \log_p L^{q\hat{q}}$ spins to disentangle with gates of range $\tilde{O}_p \log_{\frac{1}{2}} p_{L^{q\hat{q}}}$

This gives a low-depth preparation of the Gibbs ensemble.
First result: Thermal triviality

- Second technical tool: local disentangler

- Can construct a symmetric disentangler near each missing term, e.g. for qubits

\[\mathcal{D}_v : h_v \mapsto X_v \]
First result: Thermal triviality

- Second technical tool: local disentangler

Can construct a symmetric disentangler near each missing term, e.g. for qubits

\[\mathcal{D}_v : h_v \mapsto X_v \]

...and continue:

\[\mathcal{D} : h_v' \mapsto X_v' \]
First result: Thermal triviality

- Second technical tool: local disentangler

Can construct a symmetric disentangler near each missing term, e.g. for qubits:

\[D_v : h_v \mapsto X_v \]

...and continue:

\[D : h_{v'} \mapsto X_{v'} \]
First result: Thermal triviality

- Second technical tool: local disentangler

- Can construct a symmetric disentangler near each missing term, e.g. for qubits

\[D_v : h_v \mapsto X_v \]

...and continue:

\[D : h_v' \mapsto X_{v'} \]

- High probability of a missing term in each \(\log^{1/2}(L) \times \log^{1/2}(L) \) region
First result: Thermal triviality

- Second technical tool: local disentangler

- Can construct a symmetric disentangler near each missing term, e.g. for qubits

\[D_v : h_v \mapsto X_v \]

...and continue:

\[D : h_v' \mapsto X_{v'} \]

- High probability of a missing term in each \(\log^{1/2}(L) \times \log^{1/2}(L) \) region
- \(\mathcal{O}(\log(L)) \) spins to disentangle with gates of range \(\leq \mathcal{O}(\log^{1/2}(L)) \)
First result: Thermal triviality

- Second technical tool: local disentangler
- Can construct a symmetric disentangler near each missing term, e.g. for qubits
 \[D_v : h_v \mapsto X_v \]
 ...and continue:
 \[D : h_{v'} \mapsto X_{v'} \]
- High probability of a missing term in each \(\log^{1/2}(L) \times \log^{1/2}(L) \) region
- \(\mathcal{O}(\log(L)) \) spins to disentangle with gates of range \(\leq \mathcal{O}(\log^{1/2}(L)) \)
- This gives a low-depth preparation of the Gibbs ensemble.
The group cohomology models completely classify SPT phases that are protected by global onsite symmetries in $d = 1, 2$
Instability of SPT models

- The group cohomology models completely classify SPT phases that are protected by global onsite symmetries in $d = 1, 2$.

- Instability of the associated computational structures at $T > 0$?
The group cohomology models completely classify SPT phases that are protected by global onsite symmetries in $d = 1, 2$.

- Instability of the associated computational structures at $T > 0$?
- Beyond group cohomology?
Second result

- The existence of thermally stable SPT order
Second result

- The existence of thermally stable SPT order

Result 2: The Raussendorf-Bravyi-Harrington (RBH) cluster model in 3D belongs to a thermally stable SPT phase for $0 \leq T < T_c$
The Raussendorf-Bravyi-Harrington (RBH) model

- Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06
The Raussendorf-Bravyi-Harrington (RBH) model

- Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

- Very high threshold scheme at \(\sim 0.75 \% \)

Parts of the computation work thermally up to a critical temperature but there is no thermodynamic phase transition! Let's explore in the context of SPT phases!
The Raussendorf-Bravyi-Harrington (RBH) model

- Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

- Very high threshold scheme at \(\sim 0.75 \% \)

- Parts of the computation work thermally up to a critical temperature but there is no thermodynamic phase transition!
The Raussendorf-Bravyi-Harrington (RBH) model

- Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

- Very high threshold scheme at $\sim 0.75\%$

- Parts of the computation work thermally up to a critical temperature but there is no thermodynamic phase transition!

- What underpins the thermal stability/high threshold?
The Raussendorf-Bravyi-Harrington (RBH) model

- Underpins the fault-tolerant, topological measurement based scheme of Raussendorf-Harrington-Goyal 06

- Very high threshold scheme at $\sim 0.75\%$

- Parts of the computation work thermally up to a critical temperature but there is no thermodynamic phase transition!

- What underpins the thermal stability/high threshold?
 \[\rightarrow\text{ Lets explore in the context of SPT phases!}\]
The Raussendorf-Bravyi-Harrington (RBH) model

- Cubic lattice with qubits on edges and faces - RBH 05

\[
H_C = - \sum_u K_u
\]

\[
K = \begin{bmatrix}
 Z \\
 X \\
 Z \\
\end{bmatrix}
\]
The Raussendorf-Bravyi-Harrington (RBH) model

- Cubic lattice with qubits on edges and faces - RBH 05

\[H_C = - \sum_u K_u \]

- Unique ground state: \(K_u |\psi_c\rangle = |\psi_c\rangle \)
The Raussendorf-Bravyi-Harrington (RBH) model

- Cubic lattice with qubits on edges and faces - RBH 05

\[H_C = - \sum_u K_u \]

\[K = \begin{bmatrix} Z \\ Z \\ X \\ Z \\ Z \\ Z \end{bmatrix} \]

- Unique ground state: \(K_u |\psi_C\rangle = |\psi_C\rangle \)

- Constant depth preparation: \(|\psi_C\rangle = \prod_{u,w} CZ_{u,w} |+\rangle^N \)
Generalized symmetries

- Generalized symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_2$ 1-form symmetry.

$$S_M(g) = \prod_{u \in M} X_u, \quad M \text{ a 2-dim surface}$$

$$K = \begin{pmatrix} Z \\ Z & X & Z \\ Z \\ Z \end{pmatrix}$$

$$[H, S_M(g)] = 0$$
Generalized symmetries

- Generalized symmetry: \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) 1-form symmetry.

\[
S_M(g) = \prod_{u \in M} X_u, \quad M \text{ a 2-dim surface}
\]

- A symmetry for each sublattice

\[
K = \begin{bmatrix}
Z \\
Z \\
X \\
X \\
Z \\
Z \\
\end{bmatrix}
\]

\[
[H, S_M(g)] = 0
\]
Generalized symmetries

- Generalized symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_2$ 1-form symmetry.

$$S_{\mathcal{M}}(g) = \prod_{u \in \mathcal{M}} X_u, \quad \mathcal{M} \text{ a 2-dim surface}$$

- A symmetry for each sublattice
- Operators naturally arise in error correction for the topological MBQC scheme

$$K = \begin{bmatrix} Z & X & X & Z \\ Z & Z & Z & Z \end{bmatrix}$$

$$[H, S_{\mathcal{M}}(g)] = 0$$
Result 2: There exists a temperature T_c such that the Gibbs state of the RBH model is SPT ordered under this 1-form symmetry for $0 \leq T < T_c$.
Result 2: There exists a temperature T_c such that the Gibbs state of the RBH model is SPT ordered under this 1-form symmetry for $0 \leq T < T_c$.

- Two ways of proving this:
 1. Explicit order parameters
 2. Gauging the model
Result 2: There exists a temperature T_c such that the Gibbs state of the RBH model is SPT ordered under this 1-form symmetry for $0 \leq T < T_c$.

- Two ways of proving this:
 1. Explicit order parameters
 \implies Measurement based quantum computation and error correction
 2. Gauging the model
 \implies Domain wall in quantum error correcting code
Sheet order parameter

- Sheet order parameters: symmetry operators with ‘twisted boundaries’

If ρ_{triv} is $p_r \epsilon_q$-trivial with $r \alpha L \{2$, then the expectation value of these membrane operators is small.
Sheet order parameter

- Sheet order parameters: symmetry operators with ‘twisted boundaries’
- Allow for some error correction in the thermal state
Sheet order parameter

- Sheet order parameters: symmetry operators with ‘twisted boundaries’
- Allow for some error correction in the thermal state

If ρ_{triv} is (r, ϵ)-trivial with $r < L/2$, then the expectation value of these membrane operators is small.
Sheet order parameter

- Sheet order parameters: symmetry operators with ‘twisted boundaries’
- Allow for some error correction in the thermal state

If ρ_{triv} is (r, ϵ)-trivial with $r < L/2$, then the expectation value of these membrane operators is small

Compare with

$$\langle XX \rangle + \langle ZZ \rangle \leq 1$$

for product states
Error correction can maximize the expectation value of the RBH thermal state with these membranes.

- Excitations are string-like objects.
- Syndrome = boundaries of strings.
- Apply correction map to return to \(1\)-eigenspace of 1-form operators.
- Correction succeeds if no homologically nontrivial excitations.
- Closed loops that are boundaries commute with membrane operators!
Sheet order parameter

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = ‘symmetrizing’: $S_M(g) = 1$
Sheet order parameter

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = ‘symmetrizing’: $S_M(g) = 1$

1. Excitations are string like objects
• Error correction can maximize the expectation value of the RBH thermal state with these membranes
• Error correction = ‘symmetrizing’: $S_M(g) = 1$

1. Excitations are string like objects
2. Syndrome = boundaries of strings
Sheet order parameter

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = ‘symmetrizing’: $S_M(g) = 1$

1. Excitations are string like objects
2. Syndrome = boundaries of strings
3. Apply correction map to return to $+1$-eigenspace of 1-form operators
Sheet order parameter

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = ‘symmetrizing’: $S_M(g) = 1$

1. Excitations are string like objects
2. Syndrome = boundaries of strings
3. Apply correction map to return to +1-eigenspace of 1-form operators

- Correction succeeds if no homologically nontrivial excitations
Sheet order parameter

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = ‘symmetrizing’: $S_M(g) = 1$

1. Excitations are string like objects
2. Syndrome = boundaries of strings
3. Apply correction map to return to $+1$-eigenspace of 1-form operators

- Correction succeeds if no homologically nontrivial excitations
- Closed loops that are boundaries commute with membrane operators!
Sheet order parameter

- Error correction can maximize the expectation value of the RBH thermal state with these membranes
- Error correction = ‘symmetrizing’: $S_M(g) = 1$

1. Excitations are string like objects
2. Syndrome = boundaries of strings
3. Apply correction map to return to $+1$-eigenspace of 1-form operators

- Correction succeeds if no homologically nontrivial excitations
- Closed loops that are boundaries commute with membrane operators!
- This protocol succeeds below T_c due to string tension of excitations
Operational features

- Operationally: sheet order parameter quantifies the ability to distil maximally entangled pairs (encoded in toric codes) using single qubit measurements.

\[
\langle XX \rangle = \langle ZZ \rangle = 1
\]
Operational features

- Operationally: sheet order parameter quantifies the ability to distil maximally entangled pairs (encoded in toric codes) using single qubit measurements.

\[\langle XX \rangle = \langle ZZ \rangle = 1 \]

- Definition of SPT is protocol independent as one can use optimal decoder i.e. maximum likelihood decoding.
Briefly: Generalized gauging

- Can define a 4D system with boundary, that is 1-form symmetric

\[H = H_{\text{bulk}}^{4D} + H_{\text{boundary}}^{3D} \]

- Gauging gives 4D toric code with domain wall:
 - Exchanges 1D loop-like electric and magnetic excitations

\[e_1 \leftrightarrow m_2 \quad m_1 \leftrightarrow e_2 \]
Conclusion: in this talk

1. Thermal fragility of SPT models protected by global onsite symmetries
2. Robustness of SPT in the 3D cluster scheme
3. Computational aspects (distilling entanglement, fault tolerant gates, error correction)

 Usefulness of SPT for measurement based quantum computation with 1-form symmetry

- Steps toward understanding what is possible: thermally stable computational phases of matter
Further questions

1. The relationship between thermal SPT non triviality and computational power (in MBQC)
 \[\Rightarrow\] Analogous to the question of thermal topological order and its relationship to self-correcting quantum memories

2. Interesting topological defects in 3D

3. Symmetry principles for the single-shot error correction in 3D gauge color code

4. More models: interplay with transversality, symmetry enriched topological phases